Chapter 1
Industrial Information Systems -

Introduction (part Il)
(G & 3a) e licall e glaall dakai dadia

King Saud University
College of Engineering
IE department

Dr. Eng. Shady Aly

Information system development
Cila glrall 31.23 ¢ Ly ZQJ.AQ

Introduction to IS development

* Systems development methodology is a standard
process followed in an organization to analyze,
design, implement and maintain information
systems

e System analyst is responsible for analysis and
design of information systems

System development life cycle (SDLC)
aladl) okl g £liy 3lia 3) 92

e A traditional methodology used to plan,
analyze, design, implement and maintain
information systems

* Phases in SDLC: e |
—Planning / \
—Analysis \ /

- D e S I g n Implemantation tf— Design

—Implementation

—Maintenance

SDLC- Cont.

* Planning — an organization’s total information
system objectives or purpose are identified,
analyzed, prioritized, and arranged

* Analysis — system requirements are studied
and structured

SDLC- Cont.

* Design — a description of the recommended
solution is converted into logical and then
physical system specifications
— Logical design : all functional features of the

system chosen for development in analysis are

described independently of any computer
platform

— Physical design : transforming the logical
specifications of the system into the technology-
specific details

SDLC- Cont.

* Implementation —the information system is
coded, tested, installed and supported in the
organization

 Maintenance — an information system is
systematically repaired and improved

Types of SDLCs

 SDLC can be performed in two ways:
— Iterative SDLC (At dal o — &Y glas o)

— Traditional Waterfall SDLC

Iterative SDLC

* Development phases are repeated as required
until an acceptable system is found

* User participates

* Spiral development s ¥~(evolutionary) SDLC in
which we constantly cycle through the phases at
different levels of details

Traditional Waterfall SDLC

* One phase begins when another completes,
with little backtracking (<l ¢ sa)) and
looping.

Pla g W
Analysis w
Logical
Desig _w

Implementation .w

Maintenance

Problems with Waterfall Approach

e System requirements after being determined
can't change

e Limited user cooperation (only in
requirements phase)

Different Approaches to Improving IS
Development

* CASE (Computer-aided Software Engineering)
Tools

craladl 3aclivay Cilaa gl gLy o

* Rapid Application Development (RAD)
aldaill ay yuadl y glal

Computer-Aided Software Engineering
(CASE) Tools

Diagramming tools enable graphical representation.

Computer displays and report generators help
prototype how systems “look and feel”.

Documentation generators (s 4xsll Cilailaill (345 5
p3xwuall) standardize technical and user
documentation.

Code generators (<2<) enable automatic generation
of programs and database code directly from design
documents, diagrams, forms, and reports.

Computer-Aided Software Engineering
(CASE) Tools

DEWlE rr@laec|>radamF ([BOES

Eh%lhi-:ldl:l
- B8 Usa Cosa Wiaw

- 28 Exparnal Port Usags
i=-2% bdeun
i E Copsula
£ Emarnel Thraad
- 38 Lagical view
B ATO s ses
B StendoendLibrones
BE- 27 Hawe il all warks
bt -1 =111
B = AThread
B Top
-~ Camponerd Wiew
BEE] ATOComponants
=&l Main
i Sienderdlibrenes

i TheCCapsuleE=s =
- 23 Deployment viaw 1~
i~ Py hlmin — oo (AT

Bl [P lindaes e4Protocaldy | pn " ; -
- dll TheCCmpeuleExalnst=nce CE ademial : g

Eaallime - &

|
L'_
5[5
I

b

]

eeCapsulerr
Top

This capsule siats th
= exte=rnaml firmad, mand
then receives the
Evants from it

Sraunt imi=0

T}

B# ¢ exdemal: CHxdemel

,’ '"ln:.lzludns

The exdarnal prolocol powdes= L f'lll) "L.\l
mechantsm signal sn svantio s s
cap= e H relhiasd

H Thes claes uility carts
1l @ NEw BN a8 IR TS SERACE thE] : Lk theBiemalPo - FTFor non-FoseRT E:r:.da_ K

pravidas en AR hels nonFiose e : Wk inkialinsd!: char=0 Lo oo -| uses the extemal AR L

WEoraaten Ccoangils
I e sl
pa-es tsalEdaemePom]

RN R B I | e A e

L i L1

lm.;m!.'las

tmm AT Clessms) induties inchipes

o avenl [aoid) v e L
etrlio =idib windorws
rom Stand=rdLUibraries) | (from SiendardLbiranes) | from Stendarcl ibranas

hple ol using & Extemnl por to
bl o cogpaule vsing o collack

amplerurs onwind? onlythecause &
wniZ cels o ceale s thmad)

2K | [Z=0) -
[m i] "\.JIEFHIE Cnnlain::lnnt\-'i:-xlh - | 3 i ﬂ Z X X - - 3 I

T090.36] Mave =
103040 Delete Fram Modsl

C[ere Hmgrsr. Lo cal bl s O s Eoc urien ehion:

[Thi= dimnrmm nrm ik e leems e e e qF hone mn ecdeen sl b e -eninies) messmaes =

zl Apphy
& '-Eh Buaid L.ngg Eudd Errors| F[.:lln Eimi gl 2 Dmcame wteioe [=e Cods|
ForHelp fredsel I_I_I_IE

Rapid Application Development (RAD)

 Methodology to radically decrease design and
implementation time...shortened development

e |t has extensive user cooperation, prototyping,
integrated CASE tools, and code generators

Rapid Application Development (RAD)

Requirements
Planning

L—P User Design ﬁ
k\' Construction

—- Cutover

17

Rapid Application Development (RAD)

Requirements planning: planning the requirements
with user focusing on the functions and systems
interfaces and reports

User design: prototyping the system with user using
CASE in creating interfaces and report

Construction: coding the system using CASE

Cutover: delivery of the developed system to its end
user

Service-Oriented Architecture (SOA)

A method to systems development based on
building complete systems through assembling
software components , each of which model
generic business functions:

Add new Add new

Credit check
service

Billing / \ Order entry

application application

Object-Oriented Analysis and Design
(OOAD) alaa¥l dadai ol dynil) dadaill

* Based on objects rather than data or processes

— Object: a structure encapsulating attributes and
behaviors of a real-world entity.

— Object class: a logical grouping of objects sharing the
same attributes and behaviors

— Inheritance: hierarchical arrangement of classes
enable subclasses to inherit properties of super-
classes

The sources of software
QQ@AJQ.“ Jilaa

Sources of software

* There are various sources of software for
organizations.

e There are criteria to evaluate software from
different sources.

Sources of Software

Information technology services firm (Outsourcing)
Packaged software producers

Enterprise-wide solutions

Cloud Computing

Open source software

In-house development

Information Technology (IT) Services Firms

* Outsourcing (z_al oo lall S Als5iuY): Turning over responsibility 4 siws J35 of some
or all of an organization's information systems applications and operations to an outside
firm

* Reasons to outsource
— Cost-effective
— Take advantage of economies of scale
— Free up internal resources
— Reduce time to market
— Increase process efficiencies
— When system development is a non-core activity for the organization

* Help companies develop custom information systems for internal
use.

* Develop, host, and run applications for customers.

* Provide other services.

Packaged / off-the-shelf Software

Producers
Serve many market segments (pl233uY) & 5i%a),

Provide software ranging from broad-based
packages to specialized (U=—<=33s) packages.

Software runs on all size computers, from
microcomputers to large mainframes.

Prepackaged software (e,g., MS. Project) is off-the-

shelf, turnkey (J*%) software (i.e. not customizable

Enterprise Solutions Software

* Enterprise Resource Planning (ERP) systems
integrate individual traditional business
functions into modules enabling a single
seamless transaction to cut across functional
boundaries.

 SAP AG is the leading vendor of ERP systems.

Cloud Computing

* The provision of computing resources, including
applications, over the Internet, so customers do

not have to invest in the computing infrastructure
needed to run and maintain the resources

Open Source Software

Freely available including source code

Developed by a community of interested people
(making money through maintenance, support and
selling fully-featured versions)

Performs the same functions as commercial
software

Examples: Linux, mySQL, Firefox

In-House Development
G gall AN A gl

 |f sufficient system development expertise
with the chosen platform exists in-house, then
some or all of the system can be developed by
the organization’s own staff.

* Hybrid solutions involving some purchased
and some in-house components are common.

Comparing sources of software
components

Comprison of Six Different Seurces of Software Componerts

Producers When o Go to This Type of Organization for Software Internal Stefing Requirements
Mearvicesfirms When fusk requires custom support and system can'tbe Internal stoff may be needed, deperding or
oullt infernally or system needs fo be sourced application
Packaged software ~ When supparted task is generic Some 15 and user staft fo de‘ine requirements and
producers avaluate packages
Enterprise-wide For complate systems that cross funcional boundaries ~~ Some internel stalf necessary but mosty need
solutions vendors consultonts

Cloud compufing

Opsn source
software

Inhouse developers

For instant access fo an application; when supported fask
s generic
When supported fask is generic but costis an issue

When resources and slaft are available and system mus

be built from scratch

Few; frees up ot for other [T work

Some IS and user staff o defing raquiraments and
evaluate packages

Internal staff necessary though stalf size may vary

30

Criteria Selecting Off-the-Shelf (A) Software

Cost: comparing the cost of developing in-house with the
cost of purchasing or licensing the software pack

Functionality: the tasks that the software can perform

Vendor support: how much support the vendor provide
and at what cost

Viability of vendor (2« £&): can the software adapt to
changes in systems software and hardware

Flexibility: how easy it is to customize the software
Documentation: is the user’s manual and technical
documentation understandable and up-to-date

Response time: how long it takes the software package to
respond to the user’s requests in an interactive session

Ease of installation: a measure of the difficulty of loading
the software and making it operational

