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Inverse Trigonometric,
Hyperbolic, and Inverse
Hyperbolic Functions

[Calculus is] the outcome of a dramatic intellectual struggle which has
lasted for twenty-five hundred years . . .

RICHARD COURANT

Mathematics is the subject in which we never know what we are talking
about, nor whether what we are saying is true.

BERTRAND RUSSELL

Do I contradict myself?
Very well then I contradict myself.
(I am large, I contain multitudes.)

WALT WHITMAN (1819–1892)
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CAREERS IN CALCULUS: ARCHITECTURE

In thinking about the skills needed by a good architect, most people would

include drawing ability, an eye for art and design, and a good grasp of civil

engineering. But did you know that mathematics forms the backbone of

architectural theory and practice? In order to design a house, for example,

or a store, an architect needs to be able to plan, calculate, and coordinate

shapes, distances, and numerical relationships between spaces and the

structures with which she plans to fill those spaces. To be successful, the

architect must apply geometry and calculus to her designs in order to be

able to make sure that the artistic vision will “work” in the real world.

COPY



Architects, engineers, and artists have been using math through the

centuries in creating some of the world’s greatest treasures. The Great

Pyramid at Giza (the only remaining member of the Seven Wonders of the

World), Leonardo da Vinci’s “The Last Supper,” and the designs of Buck-

minster Fuller (inventor of the geodesic dome) all feature complex geomet-

ric formulations that required a strong command of mathematics in

addition to an eye for form and function.

The Gateway Arch in Saint Louis, Missouri, is close to being an inverted

catenary (see Section 9.5). It was designed by architect Eero Saarinen. You

can learn more about the history of the catenary (the term was first used by

mathematician Christiaan Huygens) by exploring the many Internet sites

devoted to mathematics and its history, like mathworld.wolfram.com. 

Here is a great project idea (encourage your professor to assign it!)

Research the mathematics behind the Gateway Arch. You will need to find

a formula for a transformed, inverted catenary curve. Use your calculator

to graph the formula and create an image that is as close to the actual 

monument as possible. By linking your grapher to a computer you can

print the calculator screen and create an exhibit by putting the image side

by side with a photograph of the arch. Augment the picture with an expla-

nation, including the history, and you will have a fine display for your

college library or science center.

■ ■ ■
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TH I S C H A P T E R C O N T I N U E S the development of nonalgebraic (“transcendental”)
functions begun in Chapter 8. In the first half we discuss the inverse trigonometric
functions, singling out three that are important for purposes of integration. Then
we turn to certain combinations of exponentials called hyperbolic functions, which
are remarkably analogous to the familiar trigonometric functions (and easier to
discuss in some respects). They are also important in applications. Finally we
derive logarithmic formulas for the inverse hyperbolic functions, which lead to inte-
gration formulas like those involving the inverse trigonometric functions. At that
point you will have a substantial list of “standard forms” to take into the next
chapter (which is devoted to techniques of integration). More important (in the
long run), you will have learned all the “elementary functions of analysis,” which
are basic working tools of mathematics and its applications.

9.1 Inverse Trigonometric Functions

We began Chapter 8 by seeking a function that would serve as an answer to the
antidifferentiation problem

� ?

Since there seemed to be no other way to proceed, we simply gave a name to the
function

F(x) � 

(the natural logarithm) and then used it to solve our problem by writing

� ln x � C        (x � 0)

As we pointed out at the time, any missing antiderivative, say

f (x) dx � ?

can be supplied in this way, by defining

F(x) � f (t) dt

and observing (by the Fundamental Theorem of Calculus) that F ′(x) � f (x) .
Ordinarily this is not a profitable thing to do. But as you have seen in Chapter

8 the natural logarithm (and its exponential inverse) have many useful properties
that justify our singling them out.

In this section we are going to introduce functions that supply other important
missing antiderivatives. One of them, for example, is an answer to the problem

� ?
dx

1 � x2�

�
x
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We could proceed as in the case of the natural logarithm by writing

F(x) � 

Then F ′(x) � 1/(1 � x 2) and our problem is (theoretically) solved. Give F a name,
tabulate its values, study its properties (including the question of what its inverse
is like), and soon it would become a familiar function in much the same way the
logarithm has been added to our repertoire. (See Additional Problems 55 and 56 at
the end of Chapter 8.)

The reason we do not take this route is that it is unnecessary. For it happens
that F is the inverse of a function that is already adequately defined and well
known, namely the tangent. It is therefore more natural (although not any easier
from a theoretical point of view) to begin with the tangent and then introduce F as
its inverse.

These remarks should help you understand why we now investigate what the
inverse trigonometric functions are like. It is not because we have suffered an
attack of renewed interest in trigonometry, but because of the important role these
functions play in calculus.

We begin with the inverse sine. It may seem perverse (after this preamble) to
point out that the sine does not even have an inverse! For its graph fails the hori-
zontal line test; given a number y in the range of y � sin x, there are infinitely many
values of x in its domain such that sin x � y. (See Figure 1.)

Figure 1 Failure of the Sine to Meet the Horizontal Line Test

This is no problem, however. As in the case of other functions without an
inverse, we simply restrict the domain in such a way that sin x takes each value in
its range exactly once. Figure 1 shows that the most natural choice is the domain
[�π/2,π/2]. The new sine function (the solid portion of the graph) does have an
inverse, namely

x � sin�1 y defined by y � sin x, �π/2 � x � π/2

As usual when dealing with an inverse function, we interchange x and y in order
to discuss the new function with its variables labeled conventionally. Hence our
formal definition of the inverse sine is as follows.

xx

y � sin x

xx x
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The inverse sine function is given by

y � sin�1 x ⇔ x � sin y �π/2 � y � π/2

It is defined for �1 � x � 1, while its range (the domain of the restricted sine) is

[�π/2,π/2].

The graph of the inverse sine (the reflection of the restricted sine in the line y � x)
is shown in Figure 2.

Remark

Some books use the notation arcsin x in place of sin�1 x. The idea is that y � arcsin x may be
read “y is the arc whose sine is x,” that is, sin y � x. (This makes sense in view of the unit
circle definitions of the trigonometric functions, where the input is often interpreted as an 
arc of the circle.) There is no harm in reading y � sin�1 x as “y is the angle whose sine is x,”
provided that you understand what angle is meant (and that it must be measured in radians
to match the numerical output of the inverse sine). The notation and its verbal translation are
not important; the essential thing is to know what the inverse sine is. Note particularly that it
is not the reciprocal of sine, that is, sin�1 x � (sin x)�1.

■ Example 1

Find each of the following.

(a) sin�1 1 (b) sin�1 (c) sin�1 (� /2)
(d) sin�1 0.8 (e) sin�1 2

Solution

(a) The equation y � sin�1 1 is equivalent to

sin y � 1        �π/2 � y � π/2

The only number in [�π/2,π/2] whose sine is 1 is y � π/2, so sin�1 1 � π/2.

(b) sin�1 � π/6, because sin (π/6) � and π/6 is between �π/2 and π/2.

(c) sin�1 (� /2) � �π/3, because sin (�π/3) � � /2 and �π/3 is between
�π/2 and π/2. Note that it is incorrect to write

sin�1 (� /2) � 4π/3

as you might be tempted to do because of your experience in trigonometry.
For although it is true that sin 4π/3 � � /2, the number 4π/3 is not in the
range of the inverse sine. Worse yet, do not write

sin�1 (� /2) � 240° (or even �60°)

The inverse sine (like the sine) is a function with numerical inputs and
outputs; angles (except in radian measure) only muddy the water.

(d) To find y � sin�1 0.8 (equivalent to sin y � 0.8, �π/2 � y � π/2), we need a
table or a calculator. The latter is simplest, for it is programmed to give a

�3

�3

�3

�3�3

1
2

1
2

�31
2
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Figure 2 Graph of the 
Inverse Sine



numerical answer directly from the inverse sine key. (Be sure your graphing
calculator is in radian mode.) Thus sin�1 0.8 � 0.92729 . . . .

(e) The equation y � sin�1 2 is equivalent to

sin y � 2        �π/2 � y � π/2

Since the range of sine is [�1,1], no such y exists; sin�1 2 is undefined. ■

■ Example 2 

Discuss the distinction between the functions

f (x) � sin (sin�1 x)        and        g(x) � sin�1 (sin x)

Solution

Since the sine and inverse sine are inverse functions, we know that sin (sin�1 x) � x
for all x in the domain of sin�1. (See Section 8.2.) This domain is the closed interval
[�1,1], so the graph of f is as shown in Figure 3 (the solid part of the line y � x).

The function g (x) � sin�1 (sin x), on the other hand, is defined for all x. (Why?)
It is easy to make the mistake of writing sin�1 (sin x) � x for all x, in which case the
graph of g would be the line y � x. The identity holds, however, only in the domain
of the restricted sine, that is,

sin�1 (sin x) � x for �π/2 � x � π/2

When x is outside this domain, things are not so simple. For example, 

sin�1 (sin π) � sin�1 0 � 0         (not π)

You should be able to figure out that

sin�1 (sin x) � x if �π/2 � x � π/2 
sin�1 (sin x) � π � x if π/2 � x � 3π/2 
sin�1 (sin x) � x � 2π if 3π/2 � x � 5π/2

and so on. The graph is shown in Figure 4.

Figure 4 Graph of y � sin�1 (sin x) ■

■ Example 3

Find the derivative of y � sin�1 x.
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Solution

Differentiate implicitly in the equivalent equation 

sin y � x �π/2 � y � π/2

to obtain

(sin y) � 1

cos y � � 1

� 

To express this result in terms of x (remembering that x � sin y), we need a relation
between sin y and cos y. It is not hard to dig one up:

sin2 y � cos2 y � 1

cos2 y � 1 � sin2 y � 1 � x 2

cos y � 	

The ambiguous sign can be settled by observing that cos y 
 0 when �π/2 � y �
π/2. Hence we conclude that

Dx sin�1 x �

As usual, this formula should be built into the Chain Rule:

(sin�1 u) �

Thus (for example)

(sin�1 x 2) � (x 2) � ■

Now we turn to the inverse tangent, which is defined as follows. (See Figure 5.)

Figure 5 Graph of the Restricted Tangent
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The inverse tangent function is given by

y � tan�1 x ⇔ x � tan y �π /2 � y � π /2

It is defined for all x (because the range of tangent is �), while its range is the domain of

the restricted tangent, namely (�π /2,π /2).

The graph of the inverse tangent (the reflection of the restricted tangent in the line
y � x) is shown in Figure 6.

■ Example 4

Find the derivative of the inverse tangent.

Solution

If y � tan�1 x, implicit differentiation in tan y � x gives 

sec 2 y � � 1

� 

Dx tan�1 x �

Using this formula with the Chain Rule, we find (for example)

(tan�1 e�x) � (e�x)

� ■

When we come to the inverse secant, the domain to be chosen is not so appar-
ent as in the preceding cases. Look at Figure 7 to see why. There is no single inter-
val in which secant takes on its values exactly once; no matter how we do it, our
domain is going to be in two pieces. For the moment, let’s postpone a decision.

Figure 7 Graph of the Restricted Secant
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■ Example 5
Assuming that some decision has been made about the restricted secant, discuss
the derivative of its inverse.

Solution

The equation y � sec�1 x is equivalent to sec y � x (where y lies in the domain not
yet specified). Differentiating implicitly, we find

sec y tan y � � 1

� (because sec y � x)

To express this result entirely in terms of x, we use the identity sec 2 y � tan2 y � 1:

tan 2 y � sec 2 y � 1 � x 2 � 1 

tan y � 	

The ambiguous sign cannot be settled (like it was in Example 3) until we know
the domain of the restricted secant. We choose the domain to make the tangent non-
negative. Certainly the interval [0,π/2) should be part of it; the other part should be
an interval in which secant takes its remaining values and tangent is never nega-
tive. We select [π,3π/2).

The inverse secant function is given by

y � sec�1 x ⇔ x � sec y 0 � y � π/2 or π � y � 3π/2

It is defined for x 
 1 or x � �1 and its range is the union of the intervals [0,π/2) and

[π,3π/2).

With this definition in hand, we can finish Example 5 by writing

Dx sec�1 x �

■

It may seem underhanded to fix things up (in Example 5) after the fact. There is
nothing illegal, immoral, or fattening about it, however, since it is a matter of defi-
nition. We could have given the definition first (and then settled the ambiguous
sign as in Example 3), but it is better to offer a reason for the definition finally
adopted.

Remark

You should be aware that the domain of the restricted secant is not always chosen this way.
Sometimes the interval [π,3π/2) is replaced by [�π,�π/2) and sometimes by (π/2,π]. The
former choice leads to the same derivative as above (why?), but the latter yields

1

x�x 2 � 1

�x2 � 1

1
sec y tan y

�
1

x tan y
dy
dx

dy
dx
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Dx sec�1 x � 

The absolute value is awkward (and leads to an ambiguous integration formula later), which
is why we have chosen a different domain. You must read other books carefully on this point
(to avoid confusion due to alternate definitions). One thing, at least, is common to every
book, namely the choice of (0,π/2) as part of the domain of each restricted trigonometric
function f. Hence the evaluation of f �1(x) for x � 0 (the situation most often encountered in
applications) is no problem.

The only remaining question (which you may have been wondering about) is
what happened to cos�1, cot�1, and csc�1? The reason we have left them for last is
that in calculus they are superfluous. To see why, consider (for example) the
inverse cosine. Figure 8 shows that a good definition is

y � cos�1 x ⇔ x � cos y 0 � y � π

Figure 8 Graph of the Restricted Cosine

By imitating Example 3, you should be able to prove that

Dx cos�1 x � 

Since this is the negative of the derivative of sin�1 x, it is of no interest in antidiffer-
entiation. (See Section 9.2.) Moreover, the inverse cosine can be written in terms of
the inverse sine, as the following example shows.

■ Example 6

Explain why cos�1 x � π/2 � sin�1 x, �1 � x � 1.

Solution

We know that sin�1 x and �cos�1 x have the same derivative in the open interval 
(�1,1). Hence they differ by a constant:

sin�1 x � (�cos�1 x) � C (that is, sin�1 x � cos�1 x � C)

Put x � 0 in this identity to find C � π/2. It follows that

cos�1 x � � sin�1 x       for �1 � x � 1 
π
2
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To extend the formula to the endpoints of the interval, we check x � 	1 directly:

sin�1 1 � and        cos�1 1 � 0

so cos�1 1 � π/2 � sin�1 1; and

sin�1(�1) � � and         cos�1(�1) � π

so cos�1(�1) � π/2 � sin�1(�1). ■

Remark

The inverse cosine, while superfluous in calculus, is used to find the angle between two
vectors. (See Section 15.1.) Hence it is worth remembering. 

The inverse cotangent is defined by

y � cot�1 x ⇔ x � cot y 0 � y � π

(Draw the graph of cotangent to see why.) Its derivative is

Dx cot�1 x � 

which is the negative of the derivative of tan�1 x. Moreover (as in Example 6), it
can be shown that

cot�1 x � � tan�1 x for all x

It might help your understanding of this section to work through the reasons for
these statements.

The inverse cosecant is hardly worth mentioning. For the record, however, we
define it by

y � csc�1 x ⇔ x � csc y 0 � y � π/2 or π � y � 3π/2

Its derivative is

Dx csc�1 x � 

which is the negative of the derivative of sec�1 x.

�1

x�x2 � 1

π
2

�1
1 � x2

π
2

π
2
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Find each of the following in exact form (no approximations).

1. sin�1 2. cos�1 (�1)

3. tan�1 4. cot�1 0

5. sec�1 1 6. cos�1 0

7. cos�1 2 8. sin�1 (� )

9. cot�1 (� ) 10. sec�1

11. tan�1 (�1/ ) 12. sec�1

13. tan (tan�1 2) 14. cos�1 (cos 3π/2)

15. cos (sec�1 3)

16. sin (2 tan�1 3)

Hint: Let t � tan�1 3 and use a formula for sin 2t.

17. cos (sin�1 � cos�1 )    

Hint: Use a formula for cos (u � v).

18. tan ( sin�1 )

Find the derivative of each of the following functions.

19. y � sin�1 (x/2) 20. y � tan�1 2x

21. y � cos�1 (1/x 2) 22. y � sec�1 x 2

23. y � cot�1 (1 � x) 24. y � tan�1

25. y � sin�1 x � 26. y � x 2 tan�1 x

27. y � x sin�1 x �

28. y � sin�1 x � x

29. y � tan�1 � � 30. y � sin�1 � �
31. y � cot�1 (tan x) 32. y � sec�1 (csc x)

33. y � sin�1 (cos x) 34. y � cos�1 (sin x)

35. y � tan�1 x � ln (1 � x 2)

36. y � x tan�1 x � ln (1 � x 2)

37. Find dy/dx from the relation

tan�1 � ln 

38. Some students expect the inverse trigonometric func-
tions to satisfy identities analogous to familiar trigono-
metric formulas, for example,

tan�1 x �

Give a numerical example showing this formula to be
false.

39. Give a numerical example disproving the formula
sin�1 x � (sin x)�1.

40. The formula cos�1 x � π/2 � sin�1 x (�1 � x � 1) was
derived in Example 6 by using calculus. Prove it
directly from the definitions, as follows.

(a) Let y � sin�1 x. Explain why x � cos (π/2 � y).
Hint: Recall the cofunction identities from
trigonometry.

(b) In view of the fact that �π/2 � y � π/2, explain
why the equation x � cos (π/2 � y) is equivalent
to cos�1 x � π/2 � y.

41. Show that cot�1 x � π/2 � tan�1 x for all x.

42. Explain why the graphs of y � sin (sin�1 x ) and y �

cos (cos�1 x) are identical segments of the line y � x.

43. Confirm that

Dx sin�1 (sin x) �

and use the result to check the graph of y � sin�1 (sin x)
in Figure 4.

44. Confirm that

Dx cos�1 (cos x) �

and use the result to help sketch the graph of y � 

cos�1 (cos x).

45. Confirm that Dx tan�1 (cot x) � �1 and use the result
to help sketch the graph of y � tan�1 (cot x). Watch the
domain!

46. Sketch the graph of the inverse cosine.

47. Sketch the graph of the cotangent and explain why it is
natural to restrict its domain to (0,π) in order to guar-
antee an inverse.

48. Sketch the graph of the inverse cotangent. 

49. Use the formula

� (Section 8.2)

to find the derivative of y � sin�1 x, as follows.

(a) Explain why

� � 

(b) Show that cos (sin�1 x) � 

50. Use the method of Problem 49 to find the derivative of
y � tan�1 x.

�1 � x2

1
cos (sin�1 x )

1
cos y

dy
dx

1
dx / dy

dy
dx

sin x

⎢sin x ⎢

cos x

⎢cos x ⎢

sin�1 x
cos�1 x

�x2 � y2y
x

1
2

1
2

1 � x
1 � x

x � 1
x � 1

�1 � x2

�1 � x2

�1 � x2

�x
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1
2
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9.2 Integration Involving Inverse Trigonometric Functions

The most important fact about the inverse trigonometric functions is that they
supply powerful new integration techniques. For example, we know that

Dx sin�1 x � 

from which it follows that

� sin�1 x � C

A slightly broader version of this formula is more useful (and is the one you
should learn):

� sin�1 � C

(In all integration formulas of this type, involving a constant a 2, we assume that 
a � 0. Otherwise it is sometimes necessary to write ⏐a⏐, which is annoying.)

The above formula can be confirmed by differentiation, but only if the answer
is known in advance. To prove it directly, write

� � a (because a � 0)�1 � x2 / a2�a2(1 � x2 / a2 )�a2 � x2

x
a

dx

�a 2 � x 2�

dx

�1 � x2�

1

�1 � x2
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51. Use differentiation to show that

sin�1 � tan�1 x for all x

52. Use differentiation to show that

tan�1 � sin�1 x if �1 � x � 1

53. Verify the formula

dx � x � sin�1 x � C

54. Derive the formula Dx cos�1 x � �1/ .

55. Derive the formula Dx cot�1 x � �1/(1 � x 2).

56. Since tangent and cotangent are reciprocals, it seems
reasonable to expect that cot�1 (1/x) � tan�1 x. Investi-
gate the validity of this formula as follows.

(a) Confirm that Dx cot�1 (1/x) � Dx tan�1 x for x � 0.

(b) It would seem to follow that cot�1 (1/x) � 

tan�1 x � C. Put x � 1 to obtain C � 0, which
apparently establishes the desired formula.

(c) Put x � �1 in the formula cot�1 (1/x) � tan�1 x to
show that it is false. (!)

(d) Look up Theorem 2, Section 4.4, to discover what
went wrong. When is the formula cot �1 (1/x) �
tan�1 x correct?

(e) Explain why cot �1 (1/x) � π � tan�1 x if x � 0.

57. Use differentiation to prove that

cos�1 x if 0 � x � 1
sec�1 � � 2π � cos�1 x if �1 � x � 0

58. The function y � cos�1 x � sec�1 x has the same value
for all x in its domain. But its derivative, far from
being zero, does not exist for any value of x. Explain.

59. We suggested in Problems 55 and 56 at the end of
Chapter 8 that the inverse sine and inverse tangent
could have been defined as integrals,

sin�1 x � and  tan�1 x � 

Having given different definitions, however, we must
regard these formulas as unproved. Why are they
true?

dt
1 � t2�

x

0
�

x

0

 
dt

�1 � t2

1
x

�1 � x2

1
2�1 � x21

2�  �1 � x2

x

�1 � x2

x

�1 � x2



Hence

� � �u � , du � dx�
� sin�1 u � C � sin�1 � C

■ Example 1

Compute the value of .

Solution

Let u � 2x, du � 2 dx. Then

� � sin�1 ⏐
2

0

� �sin�1 � sin�1 0�
� sin�1 ≈ 0.365        (from a calculator) ■

No worthwhile integration formula is associated with the inverse cosine. For
although the equation

Dx cos�1 x � 

implies that

� �cos�1 x

we already know that

� sin�1 x

(with an arbitrary constant added in each case). Hence we only complicate life by
adding a new formula to our table of integrals. The derivative of the inverse
tangent, on the other hand,

Dx tan�1 x � 

yields the formula

� tan�1 x � C

More generally (as you may confirm)

� tan�1 � C
x
a

1
a�  

dx
a 2 � x 2

dx
1 � x2�

1
1 � x2

�  
dx

�1 � x2

�  
dx

�1 � x2

�1

�1 � x2

2
3

1
2

2
3

1
2

u
3

1
2�

2

0

 
du

�9 � u2

1
2�

1

0

 
dx

�9 � 4x2

�
1

0

 
dx

�9 � 4x2

x
a

1
a

x
a

du

�1 � u2�dx

a�1 � x2 / a2�dx

�a2 � x2�
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■ Example 2

Find the area under the curve y � 1/(x 2 � 4), �2 � x � 2.

Solution

The area is

� 2 (why?)

� 2 � tan�1 ⏐
2

0
� tan�1 1 � tan�1 0 � ■

The inverse cotangent, like the inverse cosine, is not useful for integration
(because its derivative is merely the negative of the derivative of the inverse
tangent). Hence we turn to the inverse secant, with derivative

Dx sec�1 x � 

The corresponding integral formula is

� sec�1 x � C

or (more generally)

� sec�1 � C

■ Example 3

Evaluate .

Solution

Let u � 4x, du � 4 dx. Then

� � � sec�1 ⏐
8

4

� �sec�1 � sec�1 �

� �cos�1 � cos�1 � (why?)

≈ 0.14      (from a calculator) ■

�5
4

�5
8

1

�5

4

�5

8

�5

1

�5

u

�5

1

�5�
8

4

 
du

u�u2 � 5

4 dx

4x�16x2 � 5�
2

1
�

2

1

 
dx

x�16x2 � 5

�
2

1

 
dx

x�16x2 � 5

x
a

1
a�  

dx

x�x 2 � a 2

�  
dx

x�x2 � 1

1

x�x2 � 1

π
4

x
2

1
2

�
2

0

 
dx

x2 � 4�
2

�2

 
dx

x2
� 4
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Remark

We changed from sec�1 to cos�1 in Example 3 because most calculators do not have an
inverse secant key. You should convince yourself that sec�1 (1/x) � cos�1 x when 0 � x � 1,
while noting that when �1 � x � 0 the formula is false. (See Problem 57, Section 9.1.)

Our last example shows the usefulness of an inverse trigonometric function in
an impressive application.

■ Example 4

Hooke’s Law says that the restoring force exerted by a spring displaced x units
from its natural position is F � �kx (k � 0). Newton’s Second Law (force equals
mass times acceleration) converts this equation to the form m(d 2x/dt 2) � �kx,
where t is time. Thus the motion of the spring (with displacement x at time t) is
described by the second-order differential equation

� �a 2x (a � )

Suppose that the motion starts with x � 0 and v � dx/dt � a at t � 0. (The spring
moves from its natural, unstretched position with initial velocity a.) What is the
law of motion?

Solution

Reduce the equation to first-order by writing dv/dt � �a 2x. The awkward pres-
ence of t as the independent variable (when the right side involves x) can be cured
by using a device due to Newton:

� � v (by the Chain Rule)

Hence our equation becomes v (dv/dx) � �a 2x. Separate the variables by writing 
v dv � �a 2x dx and integrate:

� � � C1

Since v � a when x � 0, we find C1 � a 2/2 and hence v 2 � a 2(1 � x 2). The spring
starts out with a positive velocity (which persists during an interval after t � 0), so
we choose the positive square root when solving for v:

v � , that is, � 

Now separate the variables again and integrate:

� a dt

� a dt

sin�1 x � at � C2

�dx

�1 � x2�

dx

�1 � x2

a�1 � x2dx
dt

a�1 � x2

a2x2

2
v2

2

dv
dx

dv
dx

 
dx
dt

dv
dt

�k /m
d2x
dt2
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Find a formula for each of the following.

1. 2.

3. Hint: Let u � x 2.

4. 5.

6. 7.

8.

9. Hint: Complete the square to write
x 2 � 2x � 5 � (x � 1)2 � 4.

10. Hint: Complete the square.

11. dx Hint: Let u � 9 � 8x � x 2. 
To fit du, write 5 � 2x �

(8 � 2x) � 3 and break
into two integrals.

12. dx

Evaluate each of the following.

13. 14.

15. 16.

17. dx     Hint: Express the integrand as a sum.

18. 19. �
4

3

 
dx

x�x2 � 4�
π/2

0

 
cos x dx

9 � sin2 x

�
1

0

 
x � 1
x2 � 1

�
3

1

 
dx

x2 � 3�
π/2

0

 
sin x dx

�4 � cos2 x

�
1

0

 
x dx

�4 � x4�
2

�2

 
dx

�16 � x2

2x � 3
x2 � 4x � 5�

5 � 2x

�9 � 8x � x2�

dx

�6x � x2�

dx
x2 � 2x � 5�

dx

x�16x2 � 9�

dx

x�9x2 � 1�ex dx
1 � e2x�

dx
9 � 16x2�dx

x2 � 12�

x dx

�9 � x4�

dx

�1 � 9x2�dx

�25 � x2�

Problem Set 9.2

Since x � 0 when t � 0, we find C2 � 0 and hence

sin�1 x � at
x � sin at

This is the law of motion we mentioned in Section 7.7 (with the remark that it is not
easy to explain). Note the role of the inverse sine in finding it. ■

Remark

In Chapter 20 we will explain why the general solution of the differential equation

� a 2x � 0

is x � A cos at � B sin at. (See Problem 43, Section 7.7, where the same statement is made.) If
we assume that fact, Example 4 requires considerably less effort. For then we can differenti-
ate the general solution to obtain

� �aA sin at � aB cos at

and the initial conditions x � 0 and dx/dt � a at t � 0 yield

0 � A cos 0 � B sin 0        and        a � �aA sin 0 � aB cos 0

It follows that A � 0 and B � 1, so the solution of Example 4 is (as before) x � sin at.

dx
dt

d2x
dt2



20. 21.

22. 23. dx

24. dx

25. Find the area of the region bounded by the graphs of
y � 1/ and y � 2.

26. Find the area under the curve y � 9/(9 � x 2),
�3 � x � 3.

27. Find the volume of the solid generated by rotating the
region under the curve

y � 0 � x � 3

about the x axis.

28. Repeat Problem 27 for rotation about the y axis.

29. Use calculus to find the length of the curve

y � �r � x � r

How could the result have been predicted?

30. Solve the initial value problem dy/dx � 16 � y 2, where
y � 0 when x � 0.

31. Solve the initial value problem dy/dx � ,
where y � 0 when x � 1.

32. Find the general solution of the differential equation
dy/dx � 2xy . Hint: First dispose of the
special solutions y � 0 and y � 	2.

33. Find the general solution of the differential equation
dy/dx � (4y 2 � 1)/x.

34. The motion of a spring with displacement x at time t is
described by d 2x/dt 2 � �a 2x. If the spring is released
from a stretched position of x � 1 at t � 0, find its law
of motion.    Hint: “Released” means that the velocity
is zero at t � 0. Immediately thereafter it is negative
(which will tell you which square root to choose when
the time comes).

35. In Problem 34 suppose that the initial velocity is a.
Find the law of motion.

36. The beacon of a lighthouse 1 km from a straight shore
revolves five times per minute. Find the speed of its
beam along the shore in two ways, as follows. (See
Figure 1.)

Figure 1 Lighthouse Beam Moving along a Shore

(a) Use the relation x � tan θ to show that

� 600π sec2 θ km/hr

(Compare with Problem 36, Section 5.1.)

(b) Use the relation θ � tan�1 x to show that

� 600π (1 � x 2) km/hr

(c) Reconcile the answers. (Note that the use of an
inverse trigonometric function offers no advan-
tage, although it is a refreshing change. Most
applications involving trigonometry can be treated
either way.

37. A camera located 10 meters from the finish line is tele-
vising a race. (See Figure 2.) When the runners are 
10 meters from the finish line they are going 9 m/sec.
How fast is the camera turning at that instant?

Figure 2 Televising a Race

38. A painting 5 ft high is hung on a wall so that its lower
edge is 1 ft above eye level. How far from the wall
should an observer stand for the best view? (“Best
view” means maximum angle between the lines of
sight to the top and bottom of the painting.)    Hint: If θ
is the angle and x is the distance from the wall, then

θ � cot�1 � cot�1 x (Draw a picture!)

39. A diver is descending vertically from the center of a
hemispherical tank (Figure 3) at the rate of 2 ft/sec. A
light at the edge of the tank throws her shadow on the
curved surface of the tank. How fast is her shadow
moving along the tank when she is halfway down?

x
6

camera

runners

10
finish line

0

dx
dt

dx
dt

x

lighthouse

shore

1

0

�y2 � 4

�9 � y2

�r2 � x2

1

�9 � x2

�1 � x2

�
2

�2

 
x � 1

16x2 � 25

�
1

�1

 
x � 2

�9 � 4x2�
1

0

 
dx

�3 � 2x � x2

�
5

3

 
dx

x2 � 6x � 13�
5

2

 
dx

x�9x2 � 16
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9.3 Hyperbolic Functions

As you know from trigonometry, the coordinates of any point (x,y) on the unit
circle can be written in the form x � cos t, y � sin t, where t is the measure of the
arc from (1,0) to (x,y). (See Figure 1.) Since t � θ (in radians) and since the area of a
circular sector of radius r and central angle θ is r 2θ, we may also interpret t as
twice the area of the shaded region in Figure 1:

2(area of sector) � 2 � � 12θ � t1
2

1
2

CH A P T E R 9 ■ Inverse Trigonometric, Hyperbolic, and Inverse Hyperbolic Functions 459

Hint: First verify that α � tan�1 (h/r) � θ/2. Also note
(from trigonometry) that s � rθ.

Figure 3 Shadow Moving along a Swimming Tank

40. Derive the formula

� sin�1 � C

by differentiating the right side. (Note the role of
the assumption a � 0.)

41. Derive the formula

� tan�1 � C

in two ways, as follows.

(a) Make an appropriate substitution to reduce it to
the known formula

� tan�1 x � C

(b) Confirm it by differentiation.

42. Derive the formula

� sec�1 � C

in two ways, as follows.

(a) Make an appropriate substitution to reduce it to
the known formula

� sec�1 x � C

(b) Confirm it by differentiation.

Use differentiation to confirm each of the following integra-
tion formulas. (Later we will show how to discover them,
rather than merely checking them.)

43. sin�1 x dx � x sin�1 x � � C

44. tan�1 x dx � x tan�1 x � ln � C

45. sec�1 x dx � x sec�1 x � ln ⏐x � ⏐ � C

46. dx � � sin�1 � C

47. In previous chapters we have often computed

dx � 

by using the area interpretation of integral. Confirm
this result by using Problem 46.

48. The integrand of

is unbounded in the domain of integration, so the inte-
gral does not exist. (See Section 6.2.) We can, however,
compute 

for values of t close to 2 (and less than 2). What is the
limit of the result as t → 2? (The original integral may
be assigned this value; we will discuss such “improper
integrals” later. Note that in this example it would be
easy to overlook the difficulty and compute the inte-
gral directly in terms of the inverse sine. That does not
always work, however.)

49. What does the area under the curve

y � 0 � x � b

approach as b increases without bound?

1
1 � x2

�
t

0

 
dx

�4 � x2

�
2

0

 
dx

�4 � x2

πa2

2�
a

�a

 �a2 � x2

x
a

a2

2
�a2 � x2x

2
�a2 � x2�

�x2 � 1�

�1 � x2�

�1 � x2�

�  
dx

x�x2 � 1

x
a

1
a�  

dx

x�x2 � a2

�  
dx

1 � x2

x
a

1
a�  

dx
a2 � x2

x
a�  

dx

�a2 � x2

diver

r r

rh

light

shadow

0α



This fact leads directly to the subject of this section. For suppose we try the
same idea in connection with the unit hyperbola (the curve x 2 � y 2 � 1 in Figure
2). Letting t be twice the area of the shaded region (drawn by analogy to Figure 1),
we propose to find x and y in terms of t. The resulting functions are called the
hyperbolic cosine and sine, respectively; their similarity to the circular functions 
x � cos t and y � sin t is striking. Moreover, they turn out to be useful in unex-
pected ways (which is why they are included in this chapter).

Figure 1 Unit Circle Definition Figure 2 Unit Hyperbola Definition
of Sine and Cosine of Sine and Cosine

Anticipating the solution (which is given in an optional note at the end of this
section), we assert that

x � (e t � e �t) and        y � (e t � e �t)

These remarkable formulas (one wonders if there are similar exponential expres-
sions for x � cos t and y � sin t !) provide the starting point of our discussion.

The Hyperbolic Functions

The hyperbolic sine, cosine, tangent, . . . are defined by

sinh t � (e t � e�t ) coth t � � , t � 0

cosh t � (e t � e�t ) sech t � �

tanh t � � csch t � � , t � 0

The fundamental identity for hyperbolic functions (like cos 2 t � sin 2 t � 1 in
trigonometry) is

cosh 2 t � sinh 2 t � 1

2
et � e�t

1
sinht

et � e�t

et � e�t

sinht
cosht

2
et � e�t

1
cosht

1
2

e t � e�t

et � e�t

cosht
sinht

1
2

1
2

1
2

y

x

x 2 � y 2 � 1

A (1,0) Q (x ,0)

P (x ,y )

O

y

x

( x , y ) � (cos t, sin t )

t

x 2 � y 2 � 1

1

(1,0)
0
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This follows from the fact that the point (x,y) � (cosh t, sinh t) lies on the unit
hyperbola x 2 � y 2 � 1. Other identities can be derived from this one, such as

tanh2 t � sech2 t � 1        and        coth2 t � csch2 t � 1

but they are easily confused with similar formulas in trigonometry; we don’t rec-
ommend your trying to learn them. The points of similarity and difference be-
tween the circular and hyperbolic functions are so unpredictable that you should
take nothing for granted. For example, hyperbolic functions are even and odd in
the same pattern as the trigonometric functions:

sinh (�t) � �sinh t cosh (�t) � cosh t tanh (�t) � �tanh t

and so on. (Why?) On the other hand, none of the hyperbolic functions is periodic,
as you can see from their definition.

■ Example 1

Find the derivative of y � sinh x.

Solution

Dx sinh x � Dx(e x � e �x) � (e x � e �x) cosh x

Compare the simplicity of this argument with the development of Dx sin x � cos x
in Section 2.5! Evidently life among the hyperbolic functions is going to be easier
than trigonometry in some respects. Their derivatives (which are left for the
problem set) are given below.  ■

Dx sinh x � cosh x Dx coth x � �csch 2 x

Dx cosh x � sinh x Dx sech x � �sech x tanh x

Dx tanh x � sech 2 x Dx csch x � �csch x coth x

■ Example 2

Discuss the graph of y � sinh x.

Solution

As noted earlier, sinh is an odd function, so its graph is symmetric about the
origin. It is defined for all x, and for large x its values are close to e x. (Why?) Since

Dx sinh x � cosh x � (ex � e �x ) � 0 for all x

the graph of sinh is always rising. Moreover,

Dx
2 sinh x � sinh x � (ex � e �x ) � 0 for x � 0

so the graph is concave up in (0,�). It passes through the origin because

sinh 0 � (e 0 � e 0) � 01
2

1
2

1
2

1
2

1
2

1
2
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Hence it has the appearance shown in Figure 3.
We leave it to you to discuss the graph of y � cosh x (also shown in Figure 3). ■

■ Example 3

Discuss the graph of y � tanh x.

Solution

Since tanh x � (e x � e �x )/(e x � e �x ), the domain is �. The graph is symmetric
about the origin (because tanh is odd). For large x the values of tanh x are close to
x → 1, while tanh x → �1 when x → ��. (Why?) Hence the lines y � 	1 are
asymptotes. Since

Dx tanh x � sech2 x � 0        for all x

the graph is always rising. Moreover,

Dx
2 tanh x � 2 sech x(�sech x tanh x)

� �2 sech2 x tanh x � 0         for x � 0

Thus the graph is concave down in (0,�). It passes through the origin because 
tanh 0 � 0. (See Figure 4, which also shows the graph of y � coth x.)

The graphs of y � sech x and y � csch x (which you should verify along with
the graph of y � coth x) are shown in Figures 5 and 6. ■

■ Example 4 

In 1700 Jakob Bernoulli proved that a flexible chain or cable hanging from its ends
(and supporting no other weight but its own) takes the shape of the curve y � 

a cosh (x/a) (called a catenary from the Latin word for chain). Find the length of the
catenary y � cosh x between x � �1 and x � 1. (See the graph of cosh in Figure 3.)

Solution

We use the formula

s � dx

from Section 7.3. Since y ′ � sinh x, we find

� � (why?)
� cosh x    (why?)

Hence 

s � cosh x dx � 2 cosh x dx (why?)

� 2 sinh x ⏐
1

0
(why?)

� 2(sinh 1 � sinh 0) � 2 sinh 1        (because sinh 0 � 0)

�
1

0
�

1

�1

�cosh2 x�1 � sinh2 x�1 � y′2

�
1

�1

 �1 � y′2
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x

y

y � coth x

y � tanh x
(0,0)

y � coth x

y � 1

y � �1

Figure 4 Graphs of tanh
and coth

x

y

0

y � sech x

1       2�2    �1
�1

1

Figure 5 Graph of sech

x

y

0

y � csch x

1       2

�2    �1

�1

1

2

�2

Figure 6 Graph of csch

x

y

y  � cosh x

y  � sinh x
y  �  e x

1
–
2

(0,1)

(0,0)

Figure 3 Graphs of sinh 
and cosh



Some calculators have a sinh x key, and give sinh 1 ≈ 1.1752 directly. We can also
write

sinh 1 � (e � e�1) ≈ 1.1752

In any case the length of the curve is approximately s ≈ 2.35. ■

■ Example 5

Compute 

sinh t cosh2 t dt

Solution

Make the substitution u � cosh t. Then du � sinh t dt and the integral takes the
form ∫ u2 du. The new limits correspond to t � 0 and t � ln 2, respectively:

t � 0, u � cosh 0 � 1

t � ln 2, u � cosh (ln 2) � (e ln 2 � e �ln 2) � (2 � ) �

Hence

sinh t cosh2 t dt � u 2 du � ■

Optional Note (on finding x � cosh t and y � sinh t in terms of t )

In Figure 2 we show a point P(x,y) on the unit hyperbola x 2 � y 2 � 1. Since t is twice the
area shaded in this figure, we have

� (area of triangle OPQ) � (area of region APQ)

The region APQ is bounded by the hyperbola, the x axis, and the vertical lines through A
and Q, so we find it by integration:

area of region APQ � du

(We use u in the integrand to avoid confusion with x in the upper limit.) The area of triangle
OPQ is of course

(base)(altitude) � xy � x

Hence

t � x � 2 du

This looks hopeless to solve for x in terms of t. We can get rid of the integral, however, by
differentiation (using the Fundamental Theorem of Calculus):

� x � � � 2 � 

Now separate the variables and integrate:

� dt

� dt (1)�dx

�x2 � 1�

dx

�x2 � 1

1

�x2 � 1
�x2 � 1�x2 � 1

x

�x2 � 1

dt
dx

�u2 � 1�
x

1

�x2 � 1

�x2 � 11
2

1
2

1
2

�
x

1

 �u2 � 1

t
2

61
192�

5 /4

1
�

ln 2

0

5
4

1
2

1
2

1
2

�
ln 2

0

1
2
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1. What curve is described by the parametric equations
x � cosh t, y � sinh t? As t increases through its
domain (��,�), how does the point (x,y) move along
this curve?

2. Explain why sinh is an odd function.

3. Explain why cosh is an even function.

4. Use Problems 2 and 3 to show that tanh, coth, and csch
are odd, while sech is even.

5. Use the formula cosh2 t � sinh2 t � 1 to derive the
identity tanh2 t � sech2 t � 1.

6. Use the formula cosh2 t � sinh2 t � 1 to derive the
identity coth2 t � csch2 t � 1.

7. Given the value tanh t � � , find the value of each of
the remaining hyperbolic functions. Include an expla-
nation of why each value is unique.

8. Repeat Problem 7 given the value sinh t � 2.

Use the definitions of sinh and cosh to derive the following
formulas.

9. sinh (u � v) � sinh u cosh v � cosh u sinh v 

10. cosh (u � v) � cosh u cosh v � sinh u sinh v

Use Problems 9 and 10 to derive the following formulas.

11. sinh (u � v) � sinh u cosh v � cosh u sinh v

12. cosh (u � v) � cosh u cosh v � sinh u sinh v

3
4

Problem Set 9.3

It may appear that we are going in circles (first differentiating and then integrating). The inte-
gral on the left, however, may be found in Additional Problem 27 at the end of Chapter 8:

� ln ⏐x � ⏐ � C

Of course we do not expect you to know this formula; not surprisingly, we will derive it by
using hyperbolic functions (in the next section). Meanwhile, simply accept it as one that can
be checked by differentiation (independently of hyperbolic functions). Then (1) becomes

ln ⏐x � ⏐ � C � t

Since x 
 1 (see Figure 2), we may drop the absolute value. Moreover, C � 0 because t � 0
when x � 1. (Why?) Hence

ln (x � ) � t

Now it is relatively easy to solve for x:

x � � e t

� e t � x

x 2 � 1 � (e t � x)2 � e2t � 2xe t � x 2

2xe t � e 2t � 1

x � � (e t � e �t)

To find y, use the fact that x2 � y 2 � 1:

y 2 � x 2 � 1 � (e t � e �t)2 � 1 � (e 2t � 2 � e �2t) � 1
� (e 2t � 2 � e �2t) � (e t � e �t)2

Since y 
 0, we have

y � ⏐e t � e �t⏐ � (et � e �t)       (because t 
 0)1
2

1
2

1
4

1
4

1
4

1
4

1
2

e2t � 1
2et

�x2 � 1

�x2 � 1

�x2 � 1

�x2 � 1

�x2 � a2dx

�x2 � a2�



13. sinh 2t � 2 sinh t cosh t

14. cosh 2t � cosh2 t � sinh2 t

Use Problem 14 (together with cosh2 t � sinh2 t � 1) to
derive the following formulas.

15. sinh2 t � (cosh 2t � 1)

16. cosh2 t � (cosh 2t � 1)

17. Use the definition of cosh to prove that

Dx cosh x � sinh x

Use the derivatives of sinh and cosh to prove the following.

18. Dx tanh x � sech2 x 19. Dx coth x � csch2 x

20. Dx sech x � �sech x tanh x

21. Dx csch x � �csch x coth x

The graph of each of the following functions is shown in
the text. Confirm that it is correct by discussing domain,
symmetry, asymptotes, extreme values, and concavity.

22. y � cosh x 23. y � coth x

24. y � sech x 25. y � csch x

26. Show that the function y � A cosh x � B sinh x satis-
fies the differential equation y ′′ � y � 0. (Compare
with the fact that y � A cos x � B sin x satisfies 
y ′′ � y � 0.)

Find the derivative of each of the following functions.

27. y � sinh 2x 28. y � cosh (1 � x)

29. y � tanh x2 30. y � sinh t � cosh t

30. y � sinh t � cosh t 32. y � cosh2 t � sinh2 t

33. y � sinh x 34. y � 

35. y � ln cosh x 36. y � ln sinh x

37. y � e�x sinh x 38. y � e 2x cosh x

39. For what value of x does the function y � sinh x � 

2 cosh x have its minimum value?

40. Repeat Problem 39 for the function y � 3 cosh x � 

2 sinh x.

Evaluate each of the following integrals.

41. sinh x dx (The answer is a rational number.)

42. cosh 2x dx (The answer is a rational number.)

43. sech2 x dx

44. sech tanh dx

45. tanh x dx Hint: Make the substitution u � cosh x.

46. coth x dx     [Can you reduce the answer to the form
ln (e 2 � 1) � 1?]

47. Find the area of the region bounded by the curves
y � sinh x and y � cosh x, the y axis, and the line
x � 1. (Can you reduce the answer to 1 � e�1?)

48. Find the area of the region bounded by the curve
y � tanh x, the y axis, and the lines x � 1 and y � 1.
(Use the hint in Problem 45.)

49. The region under the curve y � tanh x, 0 � x � 1, is
rotated about the x axis. Find the volume of the result-
ing solid of revolution.    Hint: Use Problem 5.

50. The region under the curve y � cosh x, 0 � x � 1, is
rotated about the x axis. Find the volume of the result-
ing solid of revolution.    Hint: Use Problem 16.

51. Find the surface area of the solid of revolution in
Problem 50. 

52. Find the length of the catenary

y � a cosh (x/a)

between x � �a and x � a.

53. Show that the length of the catenary

y � a cosh (x/a)

from (0,a) to (x,y) is s � a sinh (x/a).

54. Why is it meaningless to ask for the derivative of
y � sin�1 (cosh x)?

55. Euler’s formula for imaginary exponents (Problem 49,
Section 8.6) says that e ix � cos x � i sin x.

(a) Explain why e �ix � cos x � i sin x.

(b) Show that

cos x � (e ix � e �ix )

and

sin x � (e ix � e �ix )
1
2i

1
2

�
2

1

�
1

0

x
2

x
2�

2

0

�
1

0

�
ln 3

0

�
ln 2

0

tanh x
x

1
2

1
2
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9.4 Inverse Hyperbolic Functions

We saw in Section 9.2 that the inverse trigonometric functions are important for
purposes of integration. Because of the analogy between trigonometric (“circular”)
functions and hyperbolic functions, we expect the same thing to be true of the
inverse hyperbolic functions. You may be pleased to learn that these functions are
ripe for the picking. Unlike the inverse trigonometric functions they involve
nothing essentially new, but can be expressed in terms of the natural logarithm.

To see what we mean, consider the inverse hyperbolic sine. You might expect
that we would proceed as so often before, observing from Figure 3 in the last
section that f (x) � sinh x has an inverse because it is continuous and increasing.
We define it by writing

y � sinh�1 x ⇔ x � sinh y

While this is reasonable enough, a second thought should occur to us. Since

x � sinh y � (e y � e �y )

why not find the inverse by solving for y in terms of x? This would make the
symbol sinh�1 superfluous (because an explicit formula for it exists).

■ Example 1

Find a formula for y � sinh�1 x.

Solution

As suggested above, we solve for y in the equation 

x � (e y � e �y )

The algebra is interesting:

x � (e y � e �y )
2x � e y � e �y

2xe y � e 2y � 1

1
2

1
2

1
2

466 CH A P T E R 9 ■ Inverse Trigonometric, Hyperbolic, and Inverse Hyperbolic Functions

(These remarkable formulas put the sine and
cosine in the context of complex-valued functions.
From the point of view of exponentials, the real
functions sinh and cosh are simpler.)

56. A formula due to Abraham De Moivre (1667–1754)
says that if n is any positive integer, then

(cos t � i sin t)n � cos nt � i sin nt

(a) Use mathematical induction, together with the 
formulas for sin (u � v) and cos (u � v), to prove
De Moivre’s theorem.

(b) Assuming that complex exponentials obey the
usual rules, give a simpler argument based on
Euler’s formula.

(c) Prove the hyperbolic formula

(cosh t � sinh t )n � cosh nt � sinh nt

noting how uncomplicated it is compared to 
De Moivre’s theorem.



Regarding this equation as quadratic in e y, (e y)2 � 2xe y � 1 � 0, we use the quad-
ratic formula (with a � 1, b � �2x, c � �1):

e y � � x 	

Since e y is always positive, and � x for all x, the ambiguous sign must be
plus. Hence

e y � x � 

y � ln (x � )

In other words, the inverse hyperbolic sine is really just a logarithm:

sinh�1 x � ln (x � )
■

■ Example 2

Find the derivative of y � sinh�1 x.

Solution

The most direct procedure is to differentiate the above logarithm. It is easier,
however, to differentiate implicitly in the equation sinh y � x:

cosh y � � 1

� 

Since cosh2 y � sinh2 y � 1, we find

cosh y � � 

(Why is the positive square root chosen?) Hence

Dx sinh�1 x �

■

The integration formula corresponding to this result is 

� sinh�1 x � C

or (more generally)

� sinh�1 � C
x
a�  

dx

�x 2 � a 2

�  
dx

�x2 � 1

1

�x 2 � 1

�x2 � 1�sinh2 y � 1

1
cosh y

dy
dx

dy
dx

�x 2 � 1

�x2 � 1

�x2 � 1

�x2 � 1

�x2 � 1
2x 	 �4x2 � 4

2
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(Confirm!) While this is good enough as it stands, it is often more useful to write it
as a logarithm (using the formula for sinh�1):

sinh�1 � ln � � � � ln � �
� ln (x � ) � ln a

Since �ln a is a constant, we may drop it in the integration formula, obtaining

� ln (x � ) � C

The inverse hyperbolic cosine is less useful (because the domain of cosh must be
artificially restricted before the inverse can be said to exist). (See Figure 3, Section
9.3.) We define it by

y � cosh�1 x ⇔ x � cosh y y 
 0

Proceeding as in Example 1, we find

cosh�1 x � ln (x � )          ( x 
 1)

and (as in Example 2)

Dx cosh�1 x � ( x � 1)

This leads to

� cosh�1 � C (x � a )

or, equivalently,

� ln (x � ) � C        (x � a)

Since these formulas involve the restriction x � a (whereas the integrand is
defined for x � �a as well as for x � a), it is desirable to find an unrestricted
formula. This is not hard to do. Simply forget about the inverse hyperbolic cosine (it
has served its purpose by leading us to the formula) and use an absolute value sign:

� ln ⏐x � ⏐ � C

This holds in the domain x � �a as well as x � a, as you can check.

�x 2 � a 2�  
dx

�x 2 � a 2

�x2 � a2�  
dx

�x2 � a2

x
a�  

dx

�x 2 � a 2

1

�x 2 � 1

�x 2 � 1

�x 2 � a 2�  
dx

�x 2 � a 2

�x2 � a2

x � �x2 � a2

a
�(x / a ) 2 � 1

x
a

x
a
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■ Example 3

Find the inverse of the hyperbolic tangent.

Solution

Figure 4 in Section 9.3 shows that no restriction on tanh is necessary to guarantee
an inverse. Hence

y � tanh�1 x ⇔ x � tanh y

To find the inverse, solve for y:

x � � 

xe 2y � x � e 2y � 1
1 � x � e 2y(1 � x)

e 2y � 

2y � ln 

y � ln 

Thus we have derived the formula

tanh�1 x � ln (⏐x⏐ � 1)
■

To differentiate this, write it in the simpler form 

y � [ln (1 � x) � ln (1 � x)]

Then

� � � � � � � 

and hence

Dx tanh�1 x � (⏐x⏐ � 1)

A similar discussion of the inverse hyperbolic cotangent shows that

coth�1 x � ln (⏐x⏐ � 1)

and

x � 1
x � 1

1
2

1
1 � x 2

1
1 � x2

2
1 � x2

1
2

1
1 � x

1
1 � x

1
2

dy
dx

1
2

1 � x
1 � x

1
2

1 � x
1 � x

1
2

1 � x
1 � x

1 � x
1 � x

e2y � 1
e2y � 1

ey � e�y

ey � e�y
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Dx coth�1 x � (⏐x⏐ � 1)

Note that tanh�1 x and coth�1 x have the same derivative, but in different
domains. There are two corresponding integration formulas:

� tanh�1 x � C        (⏐x⏐ � 1)

and

� coth�1 x � C        (⏐x⏐ � 1)

or (more generally)

� 

A single version of these formulas is sometimes more useful, and may be obtained
from the logarithmic formulas for tanh�1 x and coth�1 x given above:

� ln ⏐ ⏐� C

We will confirm this in the case ⏐x⏐ � a and leave the case ⏐x⏐ � a for you:

� coth�1 � C � � ln � � � C

� ln � C � ln ⏐ ⏐� C

�because ⏐ ⏐� when ⏐x⏐ � a�. 

The inverse hyperbolic secant and cosecant are relatively unimportant, so we
will not dwell on them. They are defined by

y � sech�1 x ⇔ x � sech y y 
 0

y � csch�1 x ⇔ x � csch y

(See Figures 5 and 6, Section 9.3, to understand why a restriction is needed in the
first case but not the second.) It follows that

sech�1 x � cosh�1 and       csch�1 x � sinh�1 (why?)
1
x

1
x

x � a
x � a

a � x
a � x

a � x
a � x

1
2a

x � a
x � a

1
2a

x /a � 1
x /a � 1

1
2

1
a

x
a

1
a�  

dx
a2 � x2

a � x
a � x

1
2a�  

dx
a2 � x2

�  
dx

a2 � x2

�  
dx

1 � x2

�  
dx

1 � x2

1
1 � x 2
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tanh�1 � C (⏐x⏐ � a )

coth�1 � C (⏐x⏐ � a )
x
a

1
a

x
a

1
a�



which means that both functions can be differentiated by formulas already devel-
oped. The results are

Dx sech�1 x � (0 � x � 1)

Dx csch�1 x � (x � 0)

We will spare you the details of developing integration formulas based on
these derivatives, and simply state the results:

� � cosh�1 � C � ln ⏐ ⏐ � C

� � sinh�1 � C � ln ⏐ ⏐ � C

Our last example illustrates the usefulness of hyperbolic functions and their
inverses in a concrete setting.

■ Example 4 

A body of mass m falls from rest, encountering air resistance that is proportional to
the square of the speed. What is the law of motion?

Solution

It is convenient to direct the line of motion downward (so that the velocity is posi-
tive). Take the origin at the point where the body starts to fall (and turn on the
clock). If s is the position of the body at time t, then s � 0 and v � ds/dt � 0 at t � 0.

The downward force of gravity (mg) and the oppositely directed force of air
resistance (�kv 2, where k � 0) combine to produce a force F � mg � kv 2 on the
body. Newton’s Second Law (force equals mass times acceleration) reduces this to
the differential equation

m � mg � kv 2

Separate the variables and integrate:

� dt

m � � t � C1 (1)

The force F � mg � kv 2 is always positive (directed downward), so we have

kv 2 � mg
v 2 � a 2 (where a � )

⏐v⏐ � a
�mg / k

�  dt�  
dv

mg � kv2

m dv
mg � kv2

dv
dt

a � �a 2 � x 2

x
1
a

a
|x |

1
a�  

dx

x�a 2 � x 2

a � �a 2 � x 2

x
1
a

a
|x |

1
a�  

dx

x�a 2 � x 2

�1

|x|�1 � x2

�1

x�1 � x2
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Hence Equation (1) becomes

� tanh�1 � t � C1

Since v � 0 when t � 0 we find C1 � 0 and thus

tanh�1 � t

tanh�1 � bt (where b � ka/m)

� tanh bt

v � a tanh bt

Since v � ds/dt, we integrate again:

s � a tanh bt dt � a 

� (u � cosh bt, du � b sinh bt dt )

� ln ⏐u⏐ � C2 � ln cosh bt � C2 (cosh bt is positive)

Since s � 0 when t � 0, we find C2 � 0 and hence the desired law of motion is

s � ln cosh bt � ln (cosh t )

Recall from Section 7.7 that Galileo’s law of motion (for a body falling from rest
in a vacuum) is simply s � gt 2. The hypothesis that air resistance is proportional to
the square of the speed is not unreasonable, but observe how it complicates
matters! The heavy artillery involved in the solution of Example 4 is impressive:

• Newton’s Second Law

• Separation of variables in a differential equation

• Integration involving the inverse hyperbolic tangent and the natural 
logarithm

• The hyperbolic sine, cosine, and tangent (which in turn involve the natural
exponential function) ■

1
2

�kgm
m
k

a
b

a
b

a
b

a
b
 �  

du
u

�  
sinh bt dt
cosh bt�

v
a

v
a

v
a

m
ka

v
a

m
k

�
1
a

m
k

 �  
dv

a2 � v2
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Find each of the following in exact form (no approximations).

1. sinh�1 0 2. cosh�1 1

3. tanh�1 0 4. sinh�1 (�1)

5. tanh�1 6. cosh�1 0

7. tanh�1 2

8. If sinh x � 2, find x in terms of logarithms.

9. If cosh 2x � 3, find x in terms of logarithms. Why are
there two answers?

10. If tanh � , find x in terms of logarithms.

11. Show that the curves y � tanh x and y � sech x
intersect at (x,y), where x � sinh�1 1 and y � 

tanh (sinh�1 1) � 1/ .

12. If f (x) � sinh (x � 1), find a formula for f �1(x).

13. If f (x) � 2 tanh (x/2), find a formula for f �1(x). What is
the domain of f �1?

14. Reflect the graph of y � sinh x (Section 9.3) in the line
y � x to obtain the graph of y � sinh�1 x.

15. Reflect the graph of y � cosh x (Section 9.3) in the line
y � x to obtain the graph of the inverse relation. What
part of this graph is the graph of y � cosh�1 x?

16. Reflect the graph of y � coth x (Section 9.3) in the line
y � x to obtain the graph of y � coth�1 x.

Find the derivative of each of the following functions.

17. f (x) � 3 sinh�1 2x 18. f (x) � cosh�1

19. f (x) � tanh�1 20. f (x) � coth�1 (1/x)

21. f (x) � x sinh�1 x � 

22. f (x) � x tanh�1 x � ln (1 � x 2)

23. f (x) � sinh�1 (tan x)

24. f (x) � tanh�1 (sin x)

Evaluate each of the following integrals.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. When a body falls from rest (encountering air resist-
ance proportional to the square of its speed), its veloc-
ity at time t is

v � a tanh bt (where a and b are positive constants)

(See Example 4.)

(a) Explain why v increases with t, but is bounded.
Name its least upper bound.

(b) How could this “terminal velocity” have been pre-
dicted before the formula for v was found? (Look
closely at Example 4!)

36. A skydiver is falling at the rate of 20 ft/sec when her
parachute opens; t seconds later her velocity satisfies
the equation

� 32 � 

(a) Solve this initial value problem to show that

t � �tanh�1 � tanh�1 �
(b) What terminal velocity does the skydiver

approach as time goes on?

(c) How long does it take her to reach 99% of her 
terminal velocity? (Use a calculator.)

37. Find the derivative of sinh�1 x � ln (x � ) and
compare with Example 2.

38. Derive the formula

� sinh�1 � C (a � 0)

by making a substitution that reduces it to the known
formula

� sinh�1 x � C

39. Derive the formula cosh�1 x � ln (x � ) as
follows.

(a) Write the equation y � cosh�1 x in equivalent
hyperbolic form and express the result as an equa-
tion that is quadratic in e y.

(b) Use the quadratic formula to solve for e y. Include a
defense of your choice of the ambiguous sign.

(c) Solve for y.

�x2 � 1

�  
dx

�x2 � 1

x
a�  

dx

�x2 � a2

�x2 � 1

1
2

v
40

5
4

v2

50
dv
dt

�
3

2

 
dx

x�16 � x2�
2

1

 
dx

x�9 � x2

�
4

2

 
dx

�9x2 � 16�
7

2

 
dx

�x2 � 1

�
1

0

 
dx

�9x2 � 25�
4

0

 
dx

�x2 � 4

�
2

1

 
dx

4x2 � 1�
3

0

 
dx

x2 � 25

�
6

4
 

dx
9 � x2�

2

0

 
dx

9 � x2

1
2

�x2 � 1

x
2

�x

1
2

�2

3
5�x

1
2
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40. Derive the formula Dx cosh�1 x � 1/ in two
ways, as follows.

(a) Use the formula in Problem 39.

(b) Let y � cosh�1 x and differentiate implicitly in the
equivalent hyperbolic equation. Include a defense
of your choice of the ambiguous sign.

41. Derive the formula

� cosh�1 � C        (x � a)

from the known formula

� cosh�1 x � C (x � 1)

42. Show how the formula

� ln (x 2 � ) � C        (x � a)

follows from

� cosh�1 � C        (x � a)

43. Derive the formula

coth�1 x � ln 

as follows.

(a) Write the equation y � coth�1 x in equivalent
hyperbolic form and solve for e 2y.

(b) Find y.

44. Derive the formula Dx coth�1 x � 1/(1 � x 2) by using
Problem 43.

45. Derive the formulas

tanh�1 � C (⏐x⏐ � a)

coth�1 � C (⏐x⏐ � a)

from the known formulas

tanh�1 x � C (⏐x⏐ � 1)
� � coth�1 x � C (⏐x⏐ � 1)

46. Confirm the formula

� ln ⏐ ⏐ � C

in the case ⏐x⏐ � a. (We did the case ⏐x⏐ � a in the
text.)

47. Show that

sech�1 x � ln 0 � x � 1

48. Derive the formula

Dx sech�1 x � 

in two ways, as follows.

(a) Use Problem 47.

(b) Use the formula sech�1 x � cosh�1 (1/x). 

49. Use the formula csch�1 x � sinh�1 (1/x) to show that

Dx csch�1 x � 

50. Derive the formula

� � cosh�1 � C

� ln ⏐ ⏐� C

51. Derive the formula

� � sinh�1 � C

� ln ⏐ ⏐ � C
a � �a2 � x2

x
1
a

a
|x|

1
a�  

dx

x�a2 � x2

a � �a2 � x2

x
1
a

a
|x|

1
a�  

dx

x�a2 � x2

�1

|x|�1 � x2

�1

x�1 � x2

1 � �1 � x2

x

a � x
a � x

1
2a�  

dx
a2 � x2

�  
dx

1 � x2

x
a

1
a

x
a

1
a

x � 1
x � 1

1
2

x
a�  

dx

�x2 � a2

�x2 � a2�  
dx

�x2 � a2

�  
dx

�x2 � 1

x
a�  

dx

�x2 � a2

�x2 � 1
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� ��  
dx

a2 � x2

9.5 The Catenary (Optional)

In Example 4, Section 9.3, we stated that a flexible chain hanging from its ends
(and supporting no other weight but its own) takes the shape of the curve y � 

a cosh (x/a). This curve is called a catenary (from the Latin word for chain). If you
are interested in physics, you should enjoy seeing how the equation of a catenary
is derived.

Figure 1 shows a chain hanging from two points of support on a horizontal
beam. We have chosen the coordinate system so that the lowest point of the chain
is at (0,a), where a is a positive constant to be specified later. The point (x,y) is any



other point of the chain, the relation between x and y being y � f (x) . The problem
is to find a formula for f (x) .

Figure 1 Equilibrium of Forces on a Hanging Chain

We are assuming that the chain is of uniform density δ , that is, it weighs δ lb
per ft. If s is the length of the portion from (0,a) to (x,y), the weight of that portion
is F � δ s. This downward force is shown as a vector in Figure 1, with initial point
at (x,y). The chain hangs motionless because the forces acting on it are in equilib-
rium. Hence there must be an upward force balancing the downward force F.
Imagine two people holding onto the endpoints of the portion shown in Figure 1
(as though the rest of the chain were removed). Each person exerts a tangential
pull (called tension); these forces, together with the downward force F, keep the
chain in the shape shown.

The tension T at (x,y) has horizontal and vertical components T cos θ and T sin
θ, respectively, whereas the tension H at (0, a) is entirely horizontal. The upward
force balancing F is therefore T sin θ, while the horizontal forces H and T cos θ
must cancel each other’s effect. In other words, F � T sin θ and H � T cos θ.

A student with no background in physics may not be at home with these ideas.
However, we can now forget about physics and concentrate on calculus. The
tension T is unknown to us, but we can eliminate it by using the slope m at (x,y):

m � tan θ � � � � � �s

Let k � δ/H (constant because the density δ and the tension H at the lowest point
of the chain are constant). Then m � ks. Since m � dy/dx, this is a differential equa-
tion involving our unknown function y � f (x) . It is awkward, however, because s
is an integral:

s � dt

(See Section 7.3.) We can eliminate the integral by differentiating with respect to x
in the equation m � ks:

� k � k

(See the first part of the Fundamental Theorem of Calculus, Section 6.4.) Since 
m � f ′(x), we have dm/dx � k and things should begin to take shape. For
this is a differential equation that can be solved by separating the variables:

�1 � m2

�1 � f ′(x ) 2ds
dx

dm
dx

�
x

0

 �1 � f ′(t ) 2

δ
H

F
H

F / T
H / T

sin θ
cos θ

x

y

y � f ( x )

H
T cos

T

s

F

( x , y )

( 0, a )

0

T sin 0

0
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� k dx

� k dx

You can also see why the catenary is discussed after a section on inverse
hyperbolic functions! The integral on the left side fits one of our formulas in
Section 9.4; we use it to write

sinh�1 m � kx � C1

Since m � 0 when x � 0 (why?), we find C1 � 0 and hence

sinh�1 m � kx 

m � sinh kx

Replacing m by dy/dx, we have another differential equation to solve:

� sinh kx

dy � sinh kx dx

dy � sinh kx dx

y � cosh kx � C2

Since y � a when x � 0 we find C2 � a � (1/k) and hence 

y � cosh kx � �a � �
Our choice of coordinate system in Figure 1 did not specify the value of a. Evi-

dently we can make this number anything we like by moving the x axis up or
down. The most convenient choice is the one making a � 1/k, in which case our
equation for the catenary reduces to y � a cosh (x/a).

An interesting corollary of the above discussion is that the tension at (x,y) in
Figure 1 is T � δ y. (We ask you to show why in the problem set.) Since δ y is the
weight of y ft of the chain, we could remove one of the upper supports and let y ft
hang from a nail driven into the wall at (x,y). (See Figure 2.) The chain would
remain in place without slipping over the nail because the tension at (x,y) has been
replaced by the weight of the vertical section of length y.

Figure 2 Chain Hanging over a Nail

x

y

( x , y )

y

1
k

1
k

1
k

��

dy
dx

�dm

�1 � m2�

dm

�1 � m2
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1. A rope 50 ft long is strung across a crevasse 40 ft wide,
each end being fastened at the same elevation. Find
the sag in the rope at its center as follows.

(a) Using the coordinate system in Figure 1, we 
know that the rope takes the shape of the catenary
y � a cosh (x/a). Explain why the sag at the 
center is

a�cosh � 1�
(b) Use Problem 53, Section 9.3, to show that a satis-

fies the equation sinh (20/a) � 25/a.

(c) To solve the equation in part (b), let t � 20/a.
Confirm that the equation becomes sinh t � 1.25t
and use Newton’s Method (Section 5.5) to
compute an approximate value of t.    Hint: A rea-
sonable first guess can be obtained from a sketch
of the graphs of y � sinh t and y � 1.25t on the
same coordinate plane. (Why?) Use a calculator to
improve it.

(d) The answer in part (c) is t ≈ 1.18. Use this value to
compute the sag.

2. Repeat Problem 1 for a rope 120 ft long strung across a
crevasse 100 ft wide.

3. Prove that the tension at (x,y) in Figure 1 is T � δy, as
follows.

(a) Show that tan θ � sinh (x/a).

(b) Why does it follow that sec θ � cosh (x/a)?

(c) We know from the text that H � T cos θ. Explain
why this gives

T � δa cosh � δy

4. If the rope in Problem 1 weighs 0.2 lb/ft, what is the
tension at its center? at its ends?

5. If the rope in Problem 2 weighs 0.3 lb/ft, what is the
tension at its center? at its ends?

6. Suppose that a rope is in the shape of the catenary 
y � a cosh (x/a), � b � x � b, and has length 2s. Show
that the sag in the rope at its center is .

7. In Problem 1 we have s � 25 and a � 20/t ≈ 17. Use
these figures in Problem 6 to compute the sag and
compare with the answer in Problem 1(d).

8. In Problem 2 we have s � 60 and a � 50/t ≈ 47. Use
these figures in Problem 6 to compute the sag and
compare with the answer in Problem 2(d).

�a2 � s2 � a

x
a

20
a

Problem Set 9.5

1. The function f (x) � sin x, 0 � x � π, has an inverse.

2. tan�1 (�1) � 3π/4.

3. cos (sin�1 x) 
 0.

4. tan�1 x � sin�1 x/cos�1 x.

5. cos (π/2 � sin�1 x) � x.

6. tan�1 (tan x) � x for all x in the domain of tangent.

7. sec�1 5 � cos�1 .

8. If f (x) � sin�1 (x/2), then f ′(1) � 2/ .

9. If f (x) � tan�1 , then f ′(1) � .

10. If f (x) � sin�1 (cos x), then f ′(4) � �1.

11. If f (x) � sec�1 , then f ′(x) � .

12. Dx(sin�1 x � cos�1 x) � 0.

13. The inverse of the function

F (x) � 

is F �1(x) � tan x, �π/2 � x � π/2.

14. � .

15. If f (x) � , then f �1(π/2) � 1.

16. � .

17. If dy/dx � 4 � y 2 and y � 2 when x � 0, then y � 

2 tan (x � π/4).

18. tan�1 x dx � x tan�1 x � ln (1 � x 2) � C.

19. sinh (ln 3) � .

20. Dx(sinh2 x � cosh2 x) � 0.

4
3

1
2�

π
12�

2

�2

  
dx

x�x2 � 1

�
x

0

 
dt

�1 � t2

π
2�

2

�2

 
dx

4 � x2

�
x

0

 
dt

1 � t2

�1

�1 � x2

1
x

1
2�x

�3

1
5

True-False Quiz



Additional Problems

Find each of the following in exact form. (Do not give
approximations.)

1. tan�1 (�1) 2. cos�1

3. sin�1 �sin � 4. sec�1 1

5. cos (cos�1 0) 6. sin�1 � cos�1

7. sin�1 2 8. tanh 0

9. cosh 0 10. sinh (ln 2)

11. tanh�1 0 12. cosh�1 0

13. When the number 1.5 is entered in a calculator and the
inverse sine key is pressed, the display panel flashes
(or otherwise indicates nonsense). Why?

14. Most calculators do not have an inverse cotangent key.
How would you use one to find cot�1 2?

Find the derivative of each of the following functions.

15. y � sin�1 (1 � x)  16. y � tan�1 ⏐x⏐

17. y � sec�1 2x 18. y � cos�1 (1/x)

19. y � cot�1 (x 2 � 1) 20. y � tan�1 x � cot�1 x

21. y � x sin�1 x 22. y � (tan�1 x ) 2

23. y � x tan�1 x � ln 

24. y � cosh x 2 25. y � tanh 

26. y � e 2x sinh x 27. y � ln sech x

28. y � tanh�1 x 2 29. y � cosh�1 2x

30. Explain why the formula

� �cos�1 � C

is correct and use it to evaluate

Check by means of the standard formula.

Evaluate each of the following.

31. 32.

33. 34.

35. Hint: Complete the square.

36.

37. sin x dx

38. cosh t dt�
ln 3

0

 �sinh t

1
2�

2

0

�
π/2

0

 
cos x dx

�9 � sin2 x

�  
x

x2 � 6x

�
6

5

 
dx

x �x2 � 16�  
x dx

�1 � x4

�
�3

0

 
dx

1 � x2�
2

0

  
dx

�16 � x2

�
1

0

 
dx

�4 � x2

x
a�  

dx

�a2 � x2

�x

�1 � x2

2
3

2
3

3π
4

1
2
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21. The range of cosh is �.

22. The domain of f (x) � sin�1 (cosh x) is �.

23. The hyperbolic tangent is an even function.

24. 0 � sech x � 1 for all x.

25. The function y � sinh x satisfies the differential equa-
tion y ′′ � y � 0.

26. Dx ln (sinh x) � coth x.

27. The function f (x) � 2 sinh x � cosh x has no extreme
values.

28. The length of the curve y � cosh x, �2 � x � 2, is 
e 2 � e �2.

29. � tanh x � C.

30. The hyperbolic cosine has an inverse.

31. cosh�1 0 � 1.

32. tanh�1 ( ) � ln 3.

33. Dx tanh�1 (cos x) � �csc x.

34. Dx sinh�1 (cot x) � �csc x.

35. � tanh�1 3 � tanh�1 2.

36. � ln 2.

37. A flexible chain whose ends are attached to two points
on a horizontal beam hangs in the shape of the curve
y � a cosh (x/a).

�
3

0

 
dx

�x2 � 16

�
3

2

 
dx

1 � x2

1
2

1
2

1
4

dx
(ex � e�x) 2�



39. Verify the formula

sech x dx � tan�1 (sinh x) � C

by differentiating the right side. 

40. If dy/dx � 1 � y 2 and y � 1 when x � 0, find y as a
function of x.

41. If dy/dx � and y � 0 when x � 1, find y as a
function of x.

42. If dy/dx � 25 � y 2 and y � 5 when x � 0, find y as a
function of x.

43. Find the area of the region bounded by the graph of

y � 

and the x axis and the lines x � 	3.

44. Find the area of the region bounded by the graph of

y � 

and the line y � 2.

45. Find the volume of the solid generated by rotating the
region under the curve y � , 0 � x � 2, about
the x axis.

46. Repeat Problem 45 for rotation about the y axis.

47. If f (x) � 2 sinh , find f �1 (x).

48. The motion of a spring with displacement x at time t 
is given by d 2x/dt 2 � �a 2x. If the spring is released
from a compressed position of x � �1 at t � 0, find 
its law of motion.    Hint: If v � dx/dt, then dv/dt �

v (dv/dx).

49. What is the domain of the function f (x) � sin�1 x �

cos�1 x? By examining f ′ (x) and drawing appropriate
conclusions, write f (x) in simpler form.

50. For what values of x is it true to say that

Dx (sin�1 x � sec�1 x) � � ?

51. Show that the function y � 3 sinh x � 2 cosh x is
always increasing.

52. Find F ′ (x) if

F (x) � x � 2 dt

What is a simpler formula for F (x)?

53. Show that

Dx cos�1 �

and use the result to explain why

cos�1 if x 
 1

2π � cos�1 if x � � l

54. Show that

tanh � ln x) � 

55. Prove that the graphs of y � sinh x and y � csch x do
not intersect at right angles.

56. Find the length of the curve y � cosh x, 0 � x � 2.

57. Find the centroid of the curve y � cosh x, �1 � x � 1.
Hint: Use the identity cosh2 t � (cosh 2t � 1) in Prob-
lem 16, Section 9.3. Also see Example 4, Section 9.3,
where the length of the curve is found to be 2 sinh 1.

58. Find the area of the surface generated by rotating the
catenary

y � a cosh (x/a)       �a � x � a 

about the x axis. (It can be shown that no other curve
with the same endpoints generates a smaller surface
area when it is rotated about the x axis.)

59. The region bounded by the curves y � tanh x and 
y � sech x and the y axis is rotated about the x axis.
Find the volume of the resulting solid of revolution as
follows.

(a) Explain why the volume is given by

V � π (2 tanh c � c)

where c is the x coordinate of the point of intersec-
tion of the curves y � tanh x and y � sech x.

(b) Show that c � ln (1 � ).

(c) Conclude that V � π [ � ln (1 � )].

60. The graph of a certain function (defined for all x) con-
tains the point (0,1) and at each point (x,y) the square
of its slope is y 2 � 1. Find a formula for the function.

61. Given t � �, explain why there is a number x between
�π/2 and π/2 such that sinh t � tan x. Then show that

cosh t � sec x
tanh t � sin x
coth t � csc x (t � 0)
sech t � cos x
csch t � cot x (t � 0)

62. The equation sinh t � tan x, �π/2 � x � π/2, in
Problem 61 defines x as a function of t.

(a) What is the formula for x?

(b) Show that dx/dt � 1/sec x.

�2�2

�2

1
2

x � 1
x � 1

1
2

1
x

1
x

1

|x| �x2 � 1

1
x

�
x

1

 �1 � t2�1 � x2

1

x �x2 � 1

1

�1 � x2

�x

�9 � x2

1

�4 � x2

1
x2 � 9

�1 � y2

�
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sec�1 x � �



(c) Separate the variables and integrate in part (b) to
obtain

sec x dx � sinh�1 (tan x) � C      �π/2 � x � π/2

(d) Use the logarithmic formula for sinh�1 to find

sec x dx � ln (sec x � tan x) � C �π/2 � x � π/2

and compare with Example 3, Section 8.5.

63. Show that tan�1 (sinh t ) � sin�1 (tanh t ) for all t in two
ways, as follows.

(a) Use Problem 61. 

(b) Use differentiation.

64. Show that sinh�1 (tan x) � tanh�1 (sin x),
� π/2 � x � π/2, in two ways, as follows.

(a) Use Problem 61.

(b) Use differentiation.

�

�
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