# CHEM.524 Homework 3 1<sup>st</sup> semester 1445

Student name:

**Student ID:** 

**1.** To which of the following (each with a single open coordination site) will trifluoroethylene bond to the most strongly? Why?



The Cp<sub>2</sub>Rh<sub>2</sub>[m-(CF<sub>3</sub>C≡CCF<sub>3</sub>)](CO)(C≡N-R) complex shown below has a Rh-Rh bond distance of 2.67 Å, strongly indicating a covalent bond between the rhodium atoms. How would you electron count this complex to accommodate a Rh-Rh covalent bond?



# Student ID:

#### Student name:

3. Which of the following ligands will coordinate the *most strongly* to a generic metal center (not too electron-rich or deficient, with enough open coordination sites)?



4. The crystal structure of  $[Cr(C_6H_6)_2]^+$  clearly shows that the hydrogen atoms on the benzene distinctly lean in towards the metal center. Explain why.



## Student ID:

### Student name:

5. In which of the following complexes should the  $\eta^6\mbox{-}ben\mbox{-}zene$  ligand coordinate the strongest? Why??



6. Explain why the Fe-C distance *lengthens* for [Cp<sub>2</sub>Fe]<sup>+</sup>, while the Co-C distance *shortens* for [Cp<sub>2</sub>Co]<sup>+</sup>.

7. Oxidation of Cp<sub>2</sub>Os does not produce a simple cationic monomer as seen for Co and Fe. Instead one gets dimerization to produce the following bimetallic complex that has an Os-Os bond (3.04 Å). Electron-count this complex. Is it para- or diamagnetic?



8. Electron-count this Ti<sub>2</sub> complex. Is it para- or diamagnetic?



### Student name:

9. Electron-count the following complex using both the covalent and dative M-M bonding methods:



10. Electron-count the following complex. What is the order of the Re-Re bond? Why wouldn't it be appropriate to use the dative bond method for this complex?

