## Green's Theorem

## Mongi BLEL

King Saud University
March 25, 2024
(1)
(2)
lVongi BLEL

## theorem (Green's Theorem)

Let $\gamma$ be a positively oriented, piecewise-smooth, simple closed curve in the plane and let $D$ be the region bounded by $\gamma$. If $P$ and $Q$ have continuous partial derivatives on an open region that contains $D$, then

$$
\int_{\gamma} P(x, y) d x+Q(x, y) d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

## Remark

The notation $\oint_{\gamma} P(x, y) d x+Q(x, y) d y$ is sometimes used to indicate that the line integral is calculated using the positive orientation of the closed curve. The Green's Theorem can be written as

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\int_{\partial D} P(x, y) d x+Q(x, y) d y
$$

where $\partial D$ is the positively oriented boundary curve of $D$.

## Example

Consider the curve defined by the boudary of the triangle $\Delta$ of vertices $(0,0),(1,0),(0,1)$. Use Green's Theorem to calculate a line integral $\int_{\gamma} x^{2} y d x+x y^{2} d y$.

$$
\begin{aligned}
\int_{\gamma} x^{2} y d x+x y^{2} d y & =\int_{\Delta}\left(y^{2}-x^{2}\right) d x d y \\
& =\int_{0}^{1}\left(\int_{0}^{1-x}\left(y^{2}-x^{2}\right) d y\right) d x=0
\end{aligned}
$$

## Example

Consider the curve defined by the circle $C$ defined by $x^{2}+y^{2}=9$. Use Green's Theorem to calculate a line integral

$$
\int_{C}\left(3 y-e^{\sin x}\right) d x+\left(7 x+\sqrt{y^{4}+1}\right) d y
$$

$$
\begin{aligned}
\int_{C}\left(3 y-e^{\sin x}\right) d x+\left(7 x+\sqrt{y^{4}+1}\right) d y & =\int_{D}(7-3) d x d y \\
& =36 \pi
\end{aligned}
$$

## Remark

Another application of Green's Theorem is in computing areas. Since the area of $D$ is $\iint_{D} d x d y$, we wish to choose $P$ and $Q$ so that $\left(\frac{\partial Q}{\partial x}-\frac{\partial Q}{\partial y}\right)=1$. Hence the area of $D$ id

$$
A=\oint_{\partial D} x d y=-\oint_{\partial D} y d x=\frac{1}{2} \oint_{\partial D}(x d y-y d x) .
$$

For example the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. A paramatrization of the ellipse $E$ is $x(t)=a \cos t, y(t)=b \sin t$.

$$
A=\frac{1}{2} \oint_{E}(x d y-y d x)=\frac{1}{2} \int_{0}^{2 \pi} a b \cos ^{2} t+a b \sin ^{2} t d t=\pi a b
$$

## Exercises

Use Green's Theorem to evaluate the line integral along the given positively oriented curve.

## Exercise 1:

$\int_{C}\left(x y^{2} d x+2 x^{2} y d y\right)$, where $C$ is the triangle with vertices $(0,0)$, $(2,2)$, and $(2,4)$.

## Solution

$$
\int_{C}\left(x y^{2} d x+2 x^{2} y d y\right)=\int_{0}^{2} \int_{x}^{2 x}(2 x y) d y d x=\int_{0}^{2} 3 x^{3} d x=12
$$

## Exercise 2 :

$\int_{C}\left(\cos y d x+x^{2} \sin y d y\right)$, where $C$ is the rectangle with vertices $(0,0),(5,0)$, and $(5,2)$.

## Solution

$\int_{C}\left(\cos y d x+x^{2} \sin y d y\right)=\int_{0}^{5} \int_{0}^{2}(2 x+1) \sin y d y d x=30(1-\cos 2)$.

## Exercise 3 :

$\int_{C}\left(x e^{-2 x} d x+\left(x^{4}+2 x^{2} y^{2}\right) d y\right)$, where $C$ is the boundary of the region between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

## Solution

$$
\begin{aligned}
\int_{C}\left(x e^{-2 x} d x+\left(x^{4}+2 x^{2} y^{2}\right) d y\right) & =\int_{1}^{2} \int_{0}^{2 \pi}\left(4 r^{3} \cos ^{3} \theta+4 r^{3} \cos \theta \sin ^{2} \theta\right. \\
& =4 \int_{1}^{2} r^{4} \int_{0}^{2 \pi} \cos \theta d r d \theta=0
\end{aligned}
$$

