
The properties 
of gases

This chapter establishes the properties of gases that will be used throughout the text. It 
begins with an account of an idealized version of a gas, a perfect gas, and shows how its
equation of state may be assembled experimentally. We then see how the properties of real
gases differ from those of a perfect gas, and construct an approximate equation of state
that describes their properties.

The simplest state of matter is a gas, a form of matter that fills any container it occu-
pies. Initially we consider only pure gases, but later in the chapter we see that the same
ideas and equations apply to mixtures of gases too.

The perfect gas

We shall find it helpful to picture a gas as a collection of molecules (or atoms) in con-
tinuous random motion, with average speeds that increase as the temperature is
raised. A gas differs from a liquid in that, except during collisions, the molecules of 
a gas are widely separated from one another and move in paths that are largely un-
affected by intermolecular forces.

1.1 The states of gases

Key points Each substance is described by an equation of state. (a) Pressure, force divided by 

area, provides a criterion of mechanical equilibrium for systems free to change their volume. 

(b) Pressure is measured with a barometer. (c) Through the Zeroth Law of thermodynamics, 

temperature provides a criterion of thermal equilibrium.

The physical state of a sample of a substance, its physical condition, is defined by its
physical properties. Two samples of a substance that have the same physical proper-
ties are in the same state. The state of a pure gas, for example, is specified by giving its
volume, V, amount of substance (number of moles), n, pressure, p, and temperature,
T. However, it has been established experimentally that it is sufficient to specify only
three of these variables, for then the fourth variable is fixed. That is, it is an experi-
mental fact that each substance is described by an equation of state, an equation that
interrelates these four variables.

The general form of an equation of state is

p = f(T,V,n) (1.1)General form of 
an equation of state
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20 1 THE PROPERTIES OF GASES

Table 1.1 Pressure units

Name Symbol Value

pascal 1 Pa 1 N m−2, 1 kg m−1 s−2

bar 1 bar 105 Pa

atmosphere 1 atm 101.325 kPa

torr 1 Torr (101 325/760) Pa = 133.32 . . . Pa

millimetres of mercury 1 mmHg 133.322 . . . Pa

pound per square inch 1 psi 6.894 757 . . . kPa

This equation tells us that, if we know the values of n, T, and V for a particular sub-
stance, then the pressure has a fixed value. Each substance is described by its own
equation of state, but we know the explicit form of the equation in only a few special
cases. One very important example is the equation of state of a ‘perfect gas’, which has
the form p = nRT/V, where R is a constant (Section F.3). Much of the rest of this 
chapter will examine the origin of this equation of state and its applications.

(a) Pressure

Pressure, p, is defined as force, F, divided by the area, A, to which the force is applied:

p = [1.2]

That is, the greater the force acting on a given area, the greater the pressure. The 
origin of the force exerted by a gas is the incessant battering of the molecules on the
walls of its container. The collisions are so numerous that they exert an effectively
steady force, which is experienced as a steady pressure. The SI unit of pressure, the
pascal (Pa, 1 Pa = 1 N m−2) was introduced in Section F.7. As we saw there, several
other units are still widely used (Table 1.1). A pressure of 1 bar is the standard pres-
sure for reporting data; we denote it p 7.

Self-test 1.1 Calculate the pressure (in pascals and atmospheres) exerted by a mass
of 1.0 kg pressing through the point of a pin of area 1.0 × 10−2 mm2 at the surface
of the Earth. Hint. The force exerted by a mass m due to gravity at the surface of the
Earth is mg, where g is the acceleration of free fall (see inside the front cover for its
standard value). [0.98 GPa, 9.7 × 103 atm]

If two gases are in separate containers that share a common movable wall (a 
‘piston’, Fig. 1.1), the gas that has the higher pressure will tend to compress (reduce
the volume of ) the gas that has lower pressure. The pressure of the high-pressure 
gas will fall as it expands and that of the low-pressure gas will rise as it is com-
pressed. There will come a stage when the two pressures are equal and the wall has 
no further tendency to move. This condition of equality of pressure on either side 
of a movable wall is a state of mechanical equilibrium between the two gases. The
pressure of a gas is therefore an indication of whether a container that contains the 
gas will be in mechanical equilibrium with another gas with which it shares a movable
wall.
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Fig. 1.1 When a region of high pressure is
separated from a region of low pressure by
a movable wall, the wall will be pushed into
one region or the other, as in (a) and (c).
However, if the two pressures are identical,
the wall will not move (b). The latter
condition is one of mechanical equilibrium
between the two regions.
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(b) The measurement of pressure

The pressure exerted by the atmosphere is measured with a barometer. The original
version of a barometer (which was invented by Torricelli, a student of Galileo) was an
inverted tube of mercury sealed at the upper end. When the column of mercury is in
mechanical equilibrium with the atmosphere, the pressure at its base is equal to that
exerted by the atmosphere. It follows that the height of the mercury column is pro-
portional to the external pressure.

Example 1.1 Calculating the pressure exerted by a column of liquid

Derive an equation for the pressure at the base of a column of liquid of mass 
density ρ (rho) and height h at the surface of the Earth. The pressure exerted by a
column of liquid is commonly called the ‘hydrostatic pressure’.

Method Use the definition of pressure in eqn 1.2 with F = mg. To calculate F
we need to know the mass m of the column of liquid, which is its mass density, ρ,
multiplied by its volume, V: m = ρV. The first step, therefore, is to calculate the 
volume of a cylindrical column of liquid.

Answer Let the column have cross-sectional area A; then its volume is Ah and its
mass is m = ρAh. The force the column of this mass exerts at its base is

F = mg = ρAhg

The pressure at the base of the column is therefore

p = = = ρgh (1.3)

Note that the hydrostatic pressure is independent of the shape and cross-sectional
area of the column. The mass of the column of a given height increases as the area,
but so does the area on which the force acts, so the two cancel.

Self-test 1.2 Derive an expression for the pressure at the base of a column of liquid
of length l held at an angle θ (theta) to the vertical (1). [p = ρgl cos θ]

The pressure of a sample of gas inside a container is measured by using a pressure
gauge, which is a device with electrical properties that depend on the pressure. For 
instance, a Bayard–Alpert pressure gauge is based on the ionization of the molecules
present in the gas and the resulting current of ions is interpreted in terms of the 
pressure. In a capacitance manometer, the deflection of a diaphragm relative to a fixed
electrode is monitored through its effect on the capacitance of the arrangement.
Certain semiconductors also respond to pressure and are used as transducers in solid-
state pressure gauges.

(c) Temperature

The concept of temperature springs from the observation that a change in physical
state (for example, a change of volume) can occur when two objects are in contact
with one another, as when a red-hot metal is plunged into water. Later (Section 2.1)
we shall see that the change in state can be interpreted as arising from a flow of energy
as heat from one object to another. The temperature, T, is the property that indicates
the direction of the flow of energy through a thermally conducting, rigid wall. If 
energy flows from A to B when they are in contact, then we say that A has a higher
temperature than B (Fig. 1.2).
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Fig. 1.2 Energy flows as heat from a region
at a higher temperature to one at a lower
temperature if the two are in contact
through a diathermic wall, as in (a) and (c).
However, if the two regions have identical
temperatures, there is no net transfer of
energy as heat even though the two regions
are separated by a diathermic wall (b). 
The latter condition corresponds to the 
two regions being at thermal equilibrium.
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It will prove useful to distinguish between two types of boundary that can separate
the objects. A boundary is diathermic (thermally conducting; ‘dia’ is from the Greek
word for ‘through’) if a change of state is observed when two objects at different 
temperatures are brought into contact. A metal container has diathermic walls. A
boundary is adiabatic (thermally insulating) if no change occurs even though the 
two objects have different temperatures. A vacuum flask is an approximation to an
adiabatic container.

The temperature is a property that indicates whether two objects would be in 
‘thermal equilibrium’ if they were in contact through a diathermic boundary.
Thermal equilibrium is established if no change of state occurs when two objects A 
to B are in contact through a diathermic boundary. Suppose an object A (which we
can think of as a block of iron) is in thermal equilibrium with an object B (a block 
of copper), and that B is also in thermal equilibrium with another object C (a flask of
water). Then it has been found experimentally that A and C will also be in thermal
equilibrium when they are put in contact (Fig. 1.3). This observation is summarized
by the Zeroth Law of thermodynamics:

If A is in thermal equilibrium with B, and B is in thermal 
equilibrium with C, then C is also in thermal equilibrium with A.

The Zeroth Law justifies the concept of temperature and the use of a thermometer,
a device for measuring the temperature. Thus, suppose that B is a glass capillary 
containing a liquid, such as mercury, that expands significantly as the temperature 
increases. Then, when A is in contact with B, the mercury column in the latter has 
a certain length. According to the Zeroth Law, if the mercury column in B has the
same length when it is placed in thermal contact with another object C, then we can
predict that no change of state of A and C will occur when they are in thermal contact.
Moreover, we can use the length of the mercury column as a measure of the tempera-
tures of A and C.

In the early days of thermometry (and still in laboratory practice today), tempera-
tures were related to the length of a column of liquid, and the difference in lengths
shown when the thermometer was first in contact with melting ice and then with boil-
ing water was divided into 100 steps called ‘degrees’, the lower point being labelled 0.
This procedure led to the Celsius scale of temperature. In this text, temperatures on
the Celsius scale are denoted θ (theta) and expressed in degrees Celsius (°C). However,
because different liquids expand to different extents, and do not always expand 
uniformly over a given range, thermometers constructed from different materials
showed different numerical values of the temperature between their fixed points. The
pressure of a gas, however, can be used to construct a perfect-gas temperature scale
that is independent of the identity of the gas. The perfect-gas scale turns out to be
identical to the thermodynamic temperature scale to be introduced in Section 3.2d,
so we shall use the latter term from now on to avoid a proliferation of names. On the
thermodynamic temperature scale, temperatures are denoted T and are normally 
reported in kelvins (K; not °K). Thermodynamic and Celsius temperatures are related
by the exact expression

T/K = θ/°C + 273.15 (1.4)

This relation is the current definition of the Celsius scale in terms of the more funda-
mental Kelvin scale. It implies that a difference in temperature of 1°C is equivalent to
a difference of 1 K.
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Fig. 1.3 The experience summarized by the
Zeroth Law of thermodynamics is that, if
an object A is in thermal equilibrium with
B and B is in thermal equilibrium with C,
then C is in thermal equilibrium with A.

A note on good practice We write 
T = 0, not T = 0 K for the zero
temperature on the thermodynamic
temperature scale. This scale is
absolute, and the lowest temperature
is 0 regardless of the size of the
divisions on the scale (just as we write
p = 0 for zero pressure, regardless of
the size of the units we adopt, such as
bar or pascal). However, we write 0°C
because the Celsius scale is not
absolute.
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• A brief illustration

To express 25.00°C as a temperature in kelvins, we use eqn 1.4 to write

T/K = (25.00°C)/°C + 273.15 = 25.00 + 273.15 = 298.15

Note how the units (in this case, °C) are cancelled like numbers. This is the procedure

called ‘quantity calculus’ in which a physical quantity (such as the temperature) is the

product of a numerical value (25.00) and a unit (1°C); see Section F.7. Multiplication of

both sides by the unit K then gives T = 298.15 K. •

1.2 The gas laws

Key points (a) The perfect gas law, a limiting law valid in the limit of zero pressure, summarizes

Boyle’s and Charles’s laws and Avogadro’s principle. (b) The kinetic theory of gases, in which

molecules are in ceaseless random motion, provides a model that accounts for the gas laws and a

relation between average speed and temperature. (c) A mixture of perfect gases behaves like a sin-

gle perfect gas; its components each contribute their partial pressure to the total pressure.

The equation of state of a gas at low pressure was established by combining a series of
empirical laws.

(a) The perfect gas law

We assume that the following individual gas laws are familiar:

Boyle’s law: pV = constant, at constant n, T (1.5)°

Charles’s law: V = constant × T, at constant n, p (1.6a)°

p = constant × T, at constant n, V (1.6b)°

Avogadro’s principle: V = constant × n at constant p, T (1.7)°

Boyle’s and Charles’s laws are examples of a limiting law, a law that is strictly true 
only in a certain limit, in this case p → 0. Equations valid in this limiting sense will 
be signalled by a ° on the equation number, as in these expressions. Avogadro’s prin-
ciple is commonly expressed in the form ‘equal volumes of gases at the same temper-
ature and pressure contain the same numbers of molecules’. In this form, it is
increasingly true as p → 0. Although these relations are strictly true only at p = 0, they
are reasonably reliable at normal pressures (p ≈ 1 bar) and are used widely throughout
chemistry.

Figure 1.4 depicts the variation of the pressure of a sample of gas as the volume is
changed. Each of the curves in the graph corresponds to a single temperature and
hence is called an isotherm. According to Boyle’s law, the isotherms of gases are 
hyperbolas (a curve obtained by plotting y against x with xy = constant). An alterna-
tive depiction, a plot of pressure against 1/volume, is shown in Fig. 1.5. The linear
variation of volume with temperature summarized by Charles’s law is illustrated 
in Fig. 1.6. The lines in this illustration are examples of isobars, or lines showing the
variation of properties at constant pressure. Figure 1.7 illustrates the linear variation
of pressure with temperature. The lines in this diagram are isochores, or lines show-
ing the variation of properties at constant volume.

The empirical observations summarized by eqns 1.5–7 can be combined into a sin-
gle expression

pV = constant × nT

A note on good practice When the
units need to be specified in an
equation, the approved procedure,
which avoids any ambiguity, is to
write (physical quantity)/units, which
is a dimensionless number, just as
(25.00°C)/°C = 25.00 in this brief
illustration. Units may be multiplied
and cancelled just like numbers.

A brief comment
Avogadro’s principle is a principle rather
than a law (a summary of experience)
because it depends on the validity of a model,
in this case the existence of molecules.
Despite there now being no doubt about 
the existence of molecules, it is still a 
model-based principle rather than a law.
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Fig. 1.4 The pressure–volume dependence
of a fixed amount of perfect gas at different
temperatures. Each curve is a hyperbola
(pV = constant) and is called an isotherm.

interActivity Explore how the
pressure of 1.5 mol CO2(g) varies

with volume as it is compressed at (a) 273 K,
(b) 373 K from 30 dm3 to 15 dm3.
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This expression is consistent with Boyle’s law (pV = constant) when n and T are
constant, with both forms of Charles’s law (p ∝ T, V ∝ T) when n and either V or p
are held constant, and with Avogadro’s principle (V ∝ n) when p and T are constant.
The constant of proportionality, which is found experimentally to be the same for 
all gases, is denoted R and called the gas constant. The resulting expression

pV = nRT (1.8)°

is the perfect gas law (or perfect gas equation of state). It is the approximate equation of
state of any gas, and becomes increasingly exact as the pressure of the gas approaches
zero. A gas that obeys eqn 1.8 exactly under all conditions is called a perfect gas (or
ideal gas). A real gas, an actual gas, behaves more like a perfect gas the lower the pres-
sure, and is described exactly by eqn 1.8 in the limit of p → 0. The gas constant R
can be determined by evaluating R = pV/nT for a gas in the limit of zero pressure 
(to guarantee that it is behaving perfectly). However, a more accurate value can be 
obtained by measuring the speed of sound in a low-pressure gas (argon is used in
practice) and extrapolating its value to zero pressure. Table 1.2 lists the values of R in
a variety of units.

The surface in Fig. 1.8 is a plot of the pressure of a fixed amount of perfect gas
against its volume and thermodynamic temperature as given by eqn 1.8. The surface
depicts the only possible states of a perfect gas: the gas cannot exist in states that do not
correspond to points on the surface. The graphs in Figs. 1.4, 1.6, and 1.7 correspond
to the sections through the surface (Fig. 1.9).
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Fig. 1.5 Straight lines are obtained when the
pressure is plotted against 1/V at constant
temperature.

interActivity Repeat interActivity 1.4,
but plot the data as p against 1/V.
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Fig. 1.6 The variation of the volume of a
fixed amount of gas with the temperature
at constant pressure. Note that in each case
the isobars extrapolate to zero volume at 
T = 0 or θ = −273°C.

interActivity Explore how the volume
of 1.5 mol CO2(g) in a container

maintained at (a) 1.00 bar, (b) 0.50 bar
varies with temperature as it is cooled from
373 K to 273 K.
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Fig. 1.7 The pressure also varies linearly
with the temperature at constant volume,
and extrapolates to zero at T = 0 (−273°C).

interActivity Explore how the
pressure of 1.5 mol CO2(g) in a

container of volume (a) 30 dm3, (b) 15 dm3

varies with temperature as it is cooled from
373 K to 273 K.

A note on good practice To test 
the validity of a relation between 
two quantities, it is best to plot them
in such a way that they should give 
a straight line, for deviations from 
a straight line are much easier to
detect than deviations from a curve.

Table 1.2 The gas constant

R

8.314 47 J K−1 mol−1

8.205 74 × 10−2 dm3 atm K−1 mol−1

8.314 47 × 10−2 dm3 bar K−1 mol−1

8.314 47 Pa m3 K−1 mol−1

62.364 dm3 Torr K−1 mol−1

1.987 21 cal K−1 mol−1
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Fig. 1.8 A region of the p,V,T surface of 
a fixed amount of perfect gas. The points
forming the surface represent the only
states of the gas that can exist.
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Fig. 1.9 Sections through the surface shown
in Fig. 1.8 at constant temperature give the
isotherms shown in Fig. 1.4 and the isobars
shown in Fig. 1.6.

Example 1.2 Using the perfect gas law

In an industrial process, nitrogen is heated to 500 K in a vessel of constant volume.
If it enters the vessel at 100 atm and 300 K, what pressure would it exert at the
working temperature if it behaved as a perfect gas?

Method We expect the pressure to be greater on account of the increase in tem-
perature. The perfect gas law in the form pV/nT = R implies that, if the conditions
are changed from one set of values to another, then, because pV/nT is equal to a
constant, the two sets of values are related by the ‘combined gas law’

= (1.9)°

This expression is easily rearranged to give the unknown quantity (in this case p2)
in terms of the known. The known and unknown data are summarized in (2).

Answer Cancellation of the volumes (because V1 = V2) and amounts (because 
n1 = n2) on each side of the combined gas law results in

=

which can be rearranged into

p2 = × p1

Substitution of the data then gives

p2 = × (100 atm) = 167 atm

Experiment shows that the pressure is actually 183 atm under these conditions, so
the assumption that the gas is perfect leads to a 10 per cent error.

Self-test 1.3 What temperature would result in the same sample exerting a pres-
sure of 300 atm? [900 K]

The perfect gas law is of the greatest importance in physical chemistry because it is
used to derive a wide range of relations that are used throughout thermodynamics.
However, it is also of considerable practical utility for calculating the properties of 
a gas under a variety of conditions. For instance, the molar volume, Vm = V/n, of a per-
fect gas under the conditions called standard ambient temperature and pressure
(SATP), which means 298.15 K and 1 bar (that is, exactly 105 Pa), is easily calculated
from Vm = RT/p to be 24.789 dm3 mol−1. An earlier definition, standard temperature
and pressure (STP), was 0°C and 1 atm; at STP, the molar volume of a perfect gas is
22.414 dm3 mol−1.

(b) The kinetic model of gases

The molecular explanation of Boyle’s law is that, if a sample of gas is compressed to
half its volume, then twice as many molecules strike the walls in a given period of time
than before it was compressed. As a result, the average force exerted on the walls is
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doubled. Hence, when the volume is halved the pressure of the gas is doubled, and 
p × V is a constant. Boyle’s law applies to all gases regardless of their chemical identity
(provided the pressure is low) because at low pressures the average separation of
molecules is so great that they exert no influence on one another and hence travel 
independently. The molecular explanation of Charles’s law lies in the fact that raising
the temperature of a gas increases the average speed of its molecules. The molecules
collide with the walls more frequently and with greater impact. Therefore they exert 
a greater pressure on the walls of the container.

These qualitative concepts are expressed quantitatively in terms of the kinetic
model of gases, which is described more fully in Chapter 20. Briefly, the kinetic model
is based on three assumptions:

1. The gas consists of molecules of mass m in ceaseless random motion.

2. The size of the molecules is negligible, in the sense that their diameters are much
smaller than the average distance travelled between collisions.

3. The molecules interact only through brief, infrequent, and elastic collisions.

An elastic collision is a collision in which the total translational kinetic energy of the
molecules is conserved. From the very economical assumptions of the kinetic model,
it can be deduced (as we show in detail in Chapter 20) that the pressure and volume of
the gas are related by

pV = nMc 2 (1.10)°

where M = mNA, the molar mass of the molecules, and c is the root mean square speed
of the molecules, the square root of the mean of the squares of the speeds, v, of the
molecules:

c = �v2�1/2 (1.11)

We see that, if the root mean square speed of the molecules depends only on the tem-
perature, then at constant temperature pV = constant, which is the content of Boyle’s
law. Moreover, for eqn 1.10 to be the equation of state of a perfect gas, its right-hand
side must be equal to nRT. It follows that the root mean square speed of the molecules
in a gas at a temperature T must be

c =
1/2

(1.12)°

We can conclude that the root mean square speed of the molecules of a gas is proportional
to the square root of the temperature and inversely proportional to the square root of the
molar mass. That is, the higher the temperature, the higher the root mean square
speed of the molecules, and, at a given temperature, heavy molecules travel more
slowly than light molecules. The root mean square speed of N2 molecules, for in-
stance, is found from eqn 1.12 to be 515 m s−1 at 298 K.

(c) Mixtures of gases

When dealing with gaseous mixtures, we often need to know the contribution that
each component makes to the total pressure of the sample. The partial pressure, pJ, of
a gas J in a mixture (any gas, not just a perfect gas), is defined as

pJ = xJ p [1.13]Definition of
partial pressure

Relation between molecular
speed and temperature

DEF
3RT

M
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1
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where xJ is the mole fraction of the component J, the amount of J expressed as a frac-
tion of the total amount of molecules, n, in the sample:

xJ = n = nA + nB + · · · [1.14]

When no J molecules are present, xJ = 0; when only J molecules are present, xJ = 1.
It follows from the definition of xJ that, whatever the composition of the mixture, 
xA + xB + · · · = 1 and therefore that the sum of the partial pressures is equal to the total
pressure

pA + pB + · · · = (xA + xB + · · ·)p = p (1.15)

This relation is true for both real and perfect gases.
When all the gases are perfect, the partial pressure as defined in eqn 1.13 is also the

pressure that each gas would exert if it occupied the same container alone at the same
temperature. The latter is the original meaning of ‘partial pressure’. That identifica-
tion was the basis of the original formulation of Dalton’s law:

The pressure exerted by a mixture of gases is the sum of the 
pressures that each one would exert if it occupied the container 
alone.

Now, however, the relation between partial pressure (as defined in eqn 1.13) and total
pressure (as given by eqn 1.15) is true for all gases and the identification of partial
pressure with the pressure that the gas would exert on its own is valid only for a per-
fect gas.

Example 1.3 Calculating partial pressures

The mass percentage composition of dry air at sea level is approximately N2: 75.5;
O2: 23.2; Ar: 1.3. What is the partial pressure of each component when the total
pressure is 1.20 atm?

Method We expect species with a high mole fraction to have a proportionally high
partial pressure. Partial pressures are defined by eqn 1.13. To use the equation, we
need the mole fractions of the components. To calculate mole fractions, which are
defined by eqn 1.14, we use the fact that the amount of molecules J of molar mass
MJ in a sample of mass mJ is nJ = mJ/MJ. The mole fractions are independent of the
total mass of the sample, so we can choose the latter to be exactly 100 g (which
makes the conversion from mass percentages very easy). Thus, the mass of N2 pre-
sent is 75.5 per cent of 100 g, which is 75.5 g.

Answer The amounts of each type of molecule present in 100 g of air, in which the
masses of N2, O2, and Ar are 75.5 g, 23.2 g, and 1.3 g, respectively, are

n(N2) = = mol

n(O2) = = mol

n(Ar) = = mol
1.3

39.95

1.3 g

39.95 g mol−1

23.2

32.00

23.2 g

32.00 g mol−1

75.5

28.02

75.5 g

28.02 g mol−1

Dalton’s
law

Definition of
mole fraction

nJ

n
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Table 1.3 The composition of dry air at sea level

Percentage

Component By volume By mass

Nitrogen, N2 78.08 75.53

Oxygen, O2 20.95 23.14

Argon, Ar 0.93 1.28

Carbon dioxide, CO2 0.031 0.047

Hydrogen, H2 5.0 × 10−3 2.0 × 10−4

Neon, Ne 1.8 × 10−3 1.3 × 10−3

Helium, He 5.2 × 10−4 7.2 × 10−5

Methane, CH4 2.0 × 10−4 1.1 × 10−4

Krypton, Kr 1.1 × 10−4 3.2 × 10−4

Nitric oxide, NO 5.0 × 10−5 1.7 × 10−6

Xenon, Xe 8.7 × 10−6 1.2 × 10−5

Ozone, O3: summer 7.0 × 10−6 1.2 × 10−5

winter 2.0 × 10−6 3.3 × 10−6

These three amounts work out as 2.69 mol, 0.725 mol, and 0.033 mol, respectively,
for a total of 3.45 mol. The mole fractions are obtained by dividing each of the
above amounts by 3.45 mol and the partial pressures are then obtained by multi-
plying the mole fraction by the total pressure (1.20 atm):

N2 O2 Ar
Mole fraction: 0.780 0.210 0.0096
Partial pressure/atm: 0.936 0.252 0.012

We have not had to assume that the gases are perfect: partial pressures are defined
as pJ = xJ p for any kind of gas.

Self-test 1.4 When carbon dioxide is taken into account, the mass percentages are
75.52 (N2), 23.15 (O2), 1.28 (Ar), and 0.046 (CO2). What are the partial pressures
when the total pressure is 0.900 atm? [0.703, 0.189, 0.0084, 0.00027 atm]

IMPACT ON ENVIRONMENTAL SCIENCE

I1.1 The gas laws and the weather

The biggest sample of gas readily accessible to us is the atmosphere, a mixture of gases
with the composition summarized in Table 1.3. The composition is maintained 
moderately constant by diffusion and convection (winds, particularly the local turbu-
lence called eddies) but the pressure and temperature vary with altitude and with the
local conditions, particularly in the troposphere (the ‘sphere of change’), the layer 
extending up to about 11 km.

In the troposphere the average temperature is 15°C at sea level, falling to −57°C at
the bottom of the tropopause at 11 km. This variation is much less pronounced when
expressed on the Kelvin scale, ranging from 288 K to 216 K, an average of 268 K. If we
suppose that the temperature has its average value all the way up to the tropopause,
then the pressure varies with altitude, h, according to the barometric formula
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p = p0e−h/H (1.16)

where p0 is the pressure at sea level and H is a constant approximately equal to 
8 km. More specifically, H = RT/Mg, where M is the average molar mass of air and T
is the temperature. This formula represents the outcome of the competition between
the potential energy of the molecules in the gravitational field of the Earth and the 
stirring effects of thermal motion; it is derived on the basis of the Boltzmann distribu-
tion (Section F.5a). The barometric formula fits the observed pressure distribution
quite well even for regions well above the troposphere (Fig. 1.10). It implies that the
pressure of the air falls to half its sea-level value at h = H ln 2, or 6 km.  

Local variations of pressure, temperature, and composition in the troposphere 
are manifest as ‘weather’. A small region of air is termed a parcel. First, we note that 
a parcel of warm air is less dense than the same parcel of cool air. As a parcel rises, it
expands adiabatically (that is, without transfer of heat from its surroundings), so it
cools. Cool air can absorb lower concentrations of water vapour than warm air, so the
moisture forms clouds. Cloudy skies can therefore be associated with rising air and
clear skies are often associated with descending air.

The motion of air in the upper altitudes may lead to an accumulation in some 
regions and a loss of molecules from other regions. The former result in the formation
of regions of high pressure (‘highs’ or anticyclones) and the latter result in regions of
low pressure (‘lows’, depressions, or cyclones). On a weather map, such as that shown
in Fig. 1.11, the lines of constant pressure marked on it are called isobars. Elongated
regions of high and low pressure are known, respectively, as ridges and troughs.

Horizontal pressure differentials result in the flow of air that we call wind
(Fig. 1.12). Winds coming from the north in the Northern hemisphere and from the
south in the Southern hemisphere are deflected towards the west as they migrate from
a region where the Earth is rotating slowly (at the poles) to where it is rotating most
rapidly (at the equator). Winds travel nearly parallel to the isobars, with low pressure
to their left in the Northern hemisphere and to the right in the Southern hemisphere.
At the surface, where wind speeds are lower, the winds tend to travel perpendicular to
the isobars from high to low pressure. This differential motion results in a spiral out-
ward flow of air clockwise in the Northern hemisphere around a high and an inward
counterclockwise flow around a low.

The air lost from regions of high pressure is restored as an influx of air converges
into the region and descends. As we have seen, descending air is associated with clear
skies. It also becomes warmer by compression as it descends, so regions of high pres-
sure are associated with high surface temperatures. In winter, the cold surface air may
prevent the complete fall of air, and result in a temperature inversion, with a layer of
warm air over a layer of cold air. Geographical conditions may also trap cool air, as in
Los Angeles, and the photochemical pollutants we know as smog may be trapped
under the warm layer.

Real gases

Real gases do not obey the perfect gas law exactly except in the limit of p → 0.
Deviations from the law are particularly important at high pressures and low temper-
atures, especially when a gas is on the point of condensing to liquid.

Fig. 1.11 A typical weather map; in this case,
for the North Atlantic and neighbouring
regions on 16 December 2008.
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Fig. 1.10 The variation of atmospheric
pressure with altitude, as predicted by the
barometric formula and as suggested by the
‘US Standard Atmosphere’, which takes
into account the variation of temperature
with altitude.

interActivity How would the graph
shown in the illustration change if

the temperature variation with altitude
were taken into account? Construct 
a graph allowing for a linear decrease in
temperature with altitude.
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1.4 The van der Waals equation

Key points (a) The van der Waals equation is a model equation of state for a real gas expressed in

terms of two parameters, one corresponding to molecular attractions and the other to molecular

repulsions. (b) The van der Waals equation captures the general features of the behaviour of real

gases, including their critical behaviour. (c) The properties of real gases are coordinated by 

expressing their equations of state in terms of reduced variables.

We can draw conclusions from the virial equations of state only by inserting specific
values of the coefficients. It is often useful to have a broader, if less precise, view of all
gases. Therefore, we introduce the approximate equation of state suggested by J.D.
van der Waals in 1873. This equation is an excellent example of an expression that can
be obtained by thinking scientifically about a mathematically complicated but physic-
ally simple problem; that is, it is a good example of ‘model building’.

(a) Formulation of the equation

The van der Waals equation is

p = − a (1.21a)

and a derivation is given in the following Justification. The equation is often written in
terms of the molar volume Vm = V/n as

p = − (1.21b)

The constants a and b are called the van der Waals coefficients. As can be understood
from the following Justification, a represents the strength of attractive interactions and
b that of the repulsive interactions between the molecules. They are characteristic of
each gas but independent of the temperature (Table 1.6). Although a and b are not
precisely defined molecular properties, they correlate with physical properties such as
critical temperature, vapor pressure, and enthalpy of vaporization that reflect the
strength of intermolecular interactions. Correlations have also been sought where 
intermolecular forces might play a role. For example, the potencies of certain general
anaesthetics show a correlation in the sense that a higher activity is observed with
lower values of a (Fig. 1.17).

Justification 1.1 The van der Waals equation of state

The repulsive interactions between molecules are taken into account by supposing
that they cause the molecules to behave as small but impenetrable spheres. The non-
zero volume of the molecules implies that instead of moving in a volume V they are
restricted to a smaller volume V − nb, where nb is approximately the total volume
taken up by the molecules themselves. This argument suggests that the perfect gas
law p = nRT/V should be replaced by

p =

when repulsions are significant. To calculate the excluded volume we note that the
closest distance of two hard-sphere molecules of radius r, and volume Vmolecule =

πr 3, is 2r, so the volume excluded is π(2r)3, or 8Vmolecule. The volume excluded
per molecule is one-half this volume, or 4Vmolecule, so b ≈ 4VmoleculeNA.

4
3

4
3

nRT

V − nb

a

V 2
m

RT

Vm − b

van der Waals
equation of state

n2

V 2

nRT

V − nb

Table 1.6* van der Waals coefficients

a/(atm dm6 mol-2) b/(10-2 dm3 mol-1)

Ar 1.337 3.20

CO2 3.610 4.29

He 0.0341 2.38

Xe 4.137 5.16

* More values are given in the Data section.
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Fig. 1.17 The correlation of the effectiveness
of a gas as an anaesthetic and the van der
Waals parameter a. (Based on R.J. Wulf
and R.M. Featherstone, Anesthesiology,
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Fig. 1.18 The graphical solution of the cubic
equation for V in Example 1.4.

The pressure depends on both the frequency of collisions with the walls and the
force of each collision. Both the frequency of the collisions and their force are 
reduced by the attractive interactions, which act with a strength proportional to 
the molar concentration, n/V, of molecules in the sample. Therefore, because both
the frequency and the force of the collisions are reduced by the attractive inter-
actions, the pressure is reduced in proportion to the square of this concentration. 
If the reduction of pressure is written as −a(n/V )2, where a is a positive constant
characteristic of each gas, the combined effect of the repulsive and attractive forces
is the van der Waals equation of state as expressed in eqn 1.21.

In this Justification we have built the van der Waals equation using vague argu-
ments about the volumes of molecules and the effects of forces. The equation can be
derived in other ways, but the present method has the advantage that it shows how
to derive the form of an equation from general ideas. The derivation also has the 
advantage of keeping imprecise the significance of the coefficients a and b: they 
are much better regarded as empirical parameters that represent attractions and 
repulsions, respectively, rather than as precisely defined molecular properties.

Example 1.4 Using the van der Waals equation to estimate a molar volume

Estimate the molar volume of CO2 at 500 K and 100 atm by treating it as a van der
Waals gas.

Method We need to find an expression for the molar volume by solving the van 
der Waals equation, eqn 1.21b. To do so, we multiply both sides of the equation by
(Vm − b)V 2

m, to obtain

(Vm − b)V 2
m p = RTV 2

m − (Vm − b)a

Then, after division by p, collect powers of Vm to obtain

V 3
m − b + V 2

m + Vm − = 0

Although closed expressions for the roots of a cubic equation can be given, they 
are very complicated. Unless analytical solutions are essential, it is usually more 
expedient to solve such equations with commercial software; graphing calculators
can also be used to help identify the acceptable root.

Answer According to Table 1.6, a = 3.610 dm6 atm mol−2 and b = 4.29 × 10−2 dm3

mol−1. Under the stated conditions, RT/p = 0.410 dm3 mol−1. The coefficients in
the equation for Vm are therefore

b + RT/p = 0.453 dm3 mol−1

a/p = 3.61 × 10−2 (dm3 mol−1)2

ab/p = 1.55 × 10−3 (dm3 mol−1)3

Therefore, on writing x = Vm/(dm3 mol−1), the equation to solve is

x3 − 0.453x2 + (3.61 × 10−2)x − (1.55 × 10−3) = 0

The acceptable root is x = 0.366 (Fig. 1.18), which implies that Vm = 0.366 dm3 mol−1.
For a perfect gas under these conditions, the molar volume is 0.410 dm3 mol−1.

Self-test 1.5 Calculate the molar volume of argon at 100°C and 100 atm on the 
assumption that it is a van der Waals gas. [0.298 dm3 mol−1]
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Discussion questions

1.1 Explain how the perfect gas equation of state arises by combination of
Boyle’s law, Charles’s law, and Avogadro’s principle.

1.2 Explain the term ‘partial pressure’ and explain why Dalton’s law is a
limiting law.

1.3 Explain how the compression factor varies with pressure and temperature
and describe how it reveals information about intermolecular interactions in
real gases.

1.4 What is the significance of the critical constants?

1.5 Describe the formulation of the van der Waals equation and suggest a
rationale for one other equation of state in Table 1.7.

1.6 Explain how the van der Waals equation accounts for critical behaviour.

Exercises

1.1(a) (a) Could 131 g of xenon gas in a vessel of volume 1.0 dm3 exert a
pressure of 20 atm at 25°C if it behaved as a perfect gas? If not, what pressure
would it exert? (b) What pressure would it exert if it behaved as a van der
Waals gas?

1.1(b) (a) Could 25 g of argon gas in a vessel of volume 1.5 dm3 exert a pressure
of 2.0 bar at 30°C if it behaved as a perfect gas? If not, what pressure would it
exert? (b) What pressure would it exert if it behaved as a van der Waals gas?

1.2(a) A perfect gas undergoes isothermal compression, which reduces its
volume by 2.20 dm3. The final pressure and volume of the gas are 5.04 bar 
and 4.65 dm3, respectively. Calculate the original pressure of the gas in (a) bar,
(b) atm.

1.2(b) A perfect gas undergoes isothermal compression, which reduces its
volume by 1.80 dm3. The final pressure and volume of the gas are 1.97 bar and
2.14 dm3, respectively. Calculate the original pressure of the gas in (a) bar, 
(b) Torr.

1.3(a) A car tyre (i.e. an automobile tire) was inflated to a pressure of 24 lb in−2

(1.00 atm = 14.7 lb in−2) on a winter’s day when the temperature was −5°C.
What pressure will be found, assuming no leaks have occurred and that the
volume is constant, on a subsequent summer’s day when the temperature is
35°C? What complications should be taken into account in practice?

1.3(b) A sample of hydrogen gas was found to have a pressure of 125 kPa
when the temperature was 23°C. What can its pressure be expected to be when
the temperature is 11°C?

1.4(a) A sample of 255 mg of neon occupies 3.00 dm3 at 122 K. Use the perfect
gas law to calculate the pressure of the gas.

1.4(b) A homeowner uses 4.00 × 103 m3 of natural gas in a year to heat a
home. Assume that natural gas is all methane, CH4, and that methane is a
perfect gas for the conditions of this problem, which are 1.00 atm and 20°C.
What is the mass of gas used?

1.5(a) A diving bell has an air space of 3.0 m3 when on the deck of a boat.
What is the volume of the air space when the bell has been lowered to a depth
of 50 m? Take the mean density of sea water to be 1.025 g cm−3 and assume
that the temperature is the same as on the surface.

1.5(b) What pressure difference must be generated across the length of a 15 cm
vertical drinking straw in order to drink a water-like liquid of density 1.0 g cm−3?

1.6(a) A manometer consists of a U-shaped tube containing a liquid. One side
is connected to the apparatus and the other is open to the atmosphere. The
pressure inside the apparatus is then determined from the difference in
heights of the liquid. Suppose the liquid is water, the external pressure is 
770 Torr, and the open side is 10.0 cm lower than the side connected to the

apparatus. What is the pressure in the apparatus? (The density of water at
25°C is 0.997 07 g cm−3.)

1.6(b) A manometer like that described in Exercise 1.6a contained mercury in
place of water. Suppose the external pressure is 760 Torr, and the open side is
10.0 cm higher than the side connected to the apparatus. What is the pressure
in the apparatus? (The density of mercury at 25°C is 13.55 g cm−3.)

1.7(a) In an attempt to determine an accurate value of the gas constant, R,
a student heated a container of volume 20.000 dm3 filled with 0.251 32 g of
helium gas to 500°C and measured the pressure as 206.402 cm of water in a
manometer at 25°C. Calculate the value of R from these data. (The density of
water at 25°C is 0.997 07 g cm−3; the construction of a manometer is described
in Exercise 1.6a.)

1.7(b) The following data have been obtained for oxygen gas at 273.15 K.
Calculate the best value of the gas constant R from them and the best value of
the molar mass of O2.

p/atm 0.750 000 0.500 000 0.250 000

Vm/(dm3 mol−1) 29.8649 44.8090 89.6384

1.8(a) At 500°C and 93.2 kPa, the mass density of sulfur vapour is 3.710 kg m−3.
What is the molecular formula of sulfur under these conditions?

1.8(b) At 100°C and 16.0 kPa, the mass density of phosphorus vapour is
0.6388 kg m−3. What is the molecular formula of phosphorus under these
conditions?

1.9(a) Calculate the mass of water vapour present in a room of volume 400 m3

that contains air at 27°C on a day when the relative humidity is 60 per cent.

1.9(b) Calculate the mass of water vapour present in a room of volume 250 m3

that contains air at 23°C on a day when the relative humidity is 53 per cent.

1.10(a) Given that the density of air at 0.987 bar and 27°C is 1.146 kg m−3,
calculate the mole fraction and partial pressure of nitrogen and oxygen
assuming that (a) air consists only of these two gases, (b) air also contains 
1.0 mole per cent Ar.

1.10(b) A gas mixture consists of 320 mg of methane, 175 mg of argon, and
225 mg of neon. The partial pressure of neon at 300 K is 8.87 kPa. Calculate
(a) the volume and (b) the total pressure of the mixture.

1.11(a) The density of a gaseous compound was found to be 1.23 kg m−3 at
330 K and 20 kPa. What is the molar mass of the compound?

1.11(b) In an experiment to measure the molar mass of a gas, 250 cm3 of the
gas was confined in a glass vessel. The pressure was 152 Torr at 298 K and,
after correcting for buoyancy effects, the mass of the gas was 33.5 mg. What is
the molar mass of the gas?
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1.12(a) The densities of air at −85°C, 0°C, and 100°C are 1.877 g dm−3, 1.294 g
dm−3, and 0.946 g dm−3, respectively. From these data, and assuming that air
obeys Charles’s law, determine a value for the absolute zero of temperature in
degrees Celsius.

1.12(b) A certain sample of a gas has a volume of 20.00 dm3 at 0°C and 
1.000 atm. A plot of the experimental data of its volume against the Celsius
temperature, θ, at constant p, gives a straight line of slope 0.0741 dm3 (°C)−1.
From these data alone (without making use of the perfect gas law), determine
the absolute zero of temperature in degrees Celsius.

1.13(a) Calculate the pressure exerted by 1.0 mol C2H6 behaving as (a) a
perfect gas, (b) a van der Waals gas when it is confined under the following
conditions: (i) at 273.15 K in 22.414 dm3, (ii) at 1000 K in 100 cm3. Use the
data in Table 1.6.

1.13(b) Calculate the pressure exerted by 1.0 mol H2S behaving as (a) a perfect
gas, (b) a van der Waals gas when it is confined under the following
conditions: (i) at 273.15 K in 22.414 dm3, (ii) at 500 K in 150 cm3. Use the data
in Table 1.6.

1.14(a) Express the van der Waals parameters a = 0.751 atm dm6 mol−2 and
b = 0.0226 dm3 mol−1 in SI base units.

1.14(b) Express the van der Waals parameters a = 1.32 atm dm6 mol−2 and
b = 0.0436 dm3 mol−1 in SI base units.

1.15(a) A gas at 250 K and 15 atm has a molar volume 12 per cent smaller
than that calculated from the perfect gas law. Calculate (a) the compression
factor under these conditions and (b) the molar volume of the gas. Which are
dominating in the sample, the attractive or the repulsive forces?

1.15(b) A gas at 350 K and 12 atm has a molar volume 12 per cent larger than
that calculated from the perfect gas law. Calculate (a) the compression factor
under these conditions and (b) the molar volume of the gas. Which are
dominating in the sample, the attractive or the repulsive forces?

1.16(a) In an industrial process, nitrogen is heated to 500 K at a constant
volume of 1.000 m3. The gas enters the container at 300 K and 100 atm. 
The mass of the gas is 92.4 kg. Use the van der Waals equation to determine
the approximate pressure of the gas at its working temperature of 500 K. 
For nitrogen, a = 1.352 dm6 atm mol−2, b = 0.0387 dm3 mol−1.

1.16(b) Cylinders of compressed gas are typically filled to a pressure of 
200 bar. For oxygen, what would be the molar volume at this pressure and
25°C based on (a) the perfect gas equation, (b) the van der Waals equation.
For oxygen, a = 1.364 dm6 atm mol−2, b = 3.19 × 10−2 dm3 mol−1.

1.17(a) Suppose that 10.0 mol C2H6(g) is confined to 4.860 dm3 at 27°C.
Predict the pressure exerted by the ethane from (a) the perfect gas and (b) the
van der Waals equations of state. Calculate the compression factor based on
these calculations. For ethane, a = 5.507 dm6 atm mol−2, b = 0.0651 dm3 mol−1.

1.17(b) At 300 K and 20 atm, the compression factor of a gas is 0.86. Calculate
(a) the volume occupied by 8.2 mmol of the gas under these conditions and
(b) an approximate value of the second virial coefficient B at 300 K.

1.18(a) A vessel of volume 22.4 dm3 contains 2.0 mol H2 and 1.0 mol N2 at
273.15 K. Calculate (a) the mole fractions of each component, (b) their partial
pressures, and (c) their total pressure.

1.18(b) A vessel of volume 22.4 dm3 contains 1.5 mol H2 and 2.5 mol N2 at
273.15 K. Calculate (a) the mole fractions of each component, (b) their partial
pressures, and (c) their total pressure.

1.19(a) The critical constants of methane are pc = 45.6 atm, Vc = 98.7 cm3 mol−1,
and Tc = 190.6 K. Calculate the van der Waals parameters of the gas and
estimate the radius of the molecules.

1.19(b) The critical constants of ethane are pc = 48.20 atm, Vc = 148 cm3 mol−1,
and Tc = 305.4 K. Calculate the van der Waals parameters of the gas and
estimate the radius of the molecules.

1.20(a) Use the van der Waals parameters for chlorine to calculate
approximate values of (a) the Boyle temperature of chlorine and (b) the radius
of a Cl2 molecule regarded as a sphere.

1.20(b) Use the van der Waals parameters for hydrogen sulfide (Table 1.6 in
the Data section) to calculate approximate values of (a) the Boyle temperature
of the gas and (b) the radius of a H2S molecule regarded as a sphere.

1.21(a) Suggest the pressure and temperature at which 1.0 mol of (a) NH3,
(b) Xe, (c) He will be in states that correspond to 1.0 mol H2 at 1.0 atm and 25°C.

1.21(b) Suggest the pressure and temperature at which 1.0 mol of (a) H2S,
(b) CO2, (c) Ar will be in states that correspond to 1.0 mol N2 at 1.0 atm and 25°C.

1.22(a) A certain gas obeys the van der Waals equation with a = 0.50 m6 Pa
mol−2. Its volume is found to be 5.00 × 10−4 m3 mol−1 at 273 K and 3.0 MPa.
From this information calculate the van der Waals constant b. What is the
compression factor for this gas at the prevailing temperature and pressure?

1.22(b) A certain gas obeys the van der Waals equation with a = 0.76 m6 Pa
mol−2. Its volume is found to be 4.00 × 10−4 m3 mol−1 at 288 K and 4.0 MPa.
From this information calculate the van der Waals constant b. What is the
compression factor for this gas at the prevailing temperature and pressure?

Problems*

Numerical problems

1.1 Recent communication with the inhabitants of Neptune has revealed that
they have a Celsius-type temperature scale, but based on the melting point
(0°N) and boiling point (100°N) of their most common substance, hydrogen.
Further communications have revealed that the Neptunians know about
perfect gas behaviour and they find that, in the limit of zero pressure, the value
of pV is 28 dm3 atm at 0°N and 40 dm3 atm at 100°N. What is the value of the
absolute zero of temperature on their temperature scale?

1.2 Deduce the relation between the pressure and mass density, ρ, of a perfect
gas of molar mass M. Confirm graphically, using the following data on

dimethyl ether at 25°C, that perfect behaviour is reached at low pressures and
find the molar mass of the gas.

p/kPa 12.223 25.20 36.97 60.37 85.23 101.3

ρ/(kg m−3) 0.225 0.456 0.664 1.062 1.468 1.734

1.3 Charles’s law is sometimes expressed in the form V = V0(1 + αθ), where θ
is the Celsius temperature, α is a constant, and V0 is the volume of the sample
at 0°C. The following values for α have been reported for nitrogen at 0°C:

p/Torr 749.7 599.6 333.1 98.6

103α /(°C)−1 3.6717 3.6697 3.6665 3.6643

* Problems denoted with the symbol * were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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20.1 The kinetic model of gases

Key points The kinetic model of a gas considers only the contribution to the energy from the 

kinetic energies of the molecules. (a) Important results from the model include expressions for the

pressure and the root mean square speed. The Maxwell distribution of speeds gives the fraction 

of molecules that have speeds in a specified range. (b) The collision frequency is the number of 

collisions made by a molecule in an interval divided by the length of the interval. (c) The mean free

path is the average distance a molecule travels between collisions.

The kinetic model is based on three assumptions:

1. The gas consists of molecules of mass m in ceaseless random motion.

2. The size of the molecules is negligible, in the sense that their diameters are much
smaller than the average distance travelled between collisions.

3. The molecules interact only through brief, infrequent, and elastic collisions.

An elastic collision is a collision in which the total translational kinetic energy of the
molecules is conserved.

(a) Pressure and molecular speeds

From the very economical assumptions of the kinetic model, we show in the follow-
ing Justification that the pressure and volume of the gas are related by

pV = nMc 2 (20.1)°

where M = mNA, the molar mass of the molecules, and c is the root mean square speed
of the molecules, the square root of the mean of the squares of the speeds, v, of the
molecules:

c = �v2�1/2 [20.2]

Justification 20.1 The pressure of a gas according to the kinetic model

Consider the arrangement in Fig. 20.1. When a particle of mass m that is travelling
with a component of velocity vx parallel to the x-axis collides with the wall on the
right and is reflected, its linear momentum (the product of its mass and its velocity)
changes from mvx before the collision to −mvx after the collision (when it is travel-
ling in the opposite direction). The x-component of momentum therefore changes
by 2mvx on each collision (the y- and z-components are unchanged). Many
molecules collide with the wall in an interval Δt, and the total change of momentum
is the product of the change in momentum of each molecule multiplied by the num-
ber of molecules that reach the wall during the interval.

Because a molecule with velocity component vx can travel a distance vx Δt along
the x-axis in an interval Δt, all the molecules within a distance vx Δt of the wall will
strike it if they are travelling towards it (Fig. 20.2). It follows that, if the wall has area
A, then all the particles in a volume A × vx Δt will reach the wall (if they are travelling
towards it). The number density of particles is nNA/V, where n is the total amount
of molecules in the container of volume V and NA is Avogadro’s constant, so the
number of molecules in the volume Avx Δt is (nNA/V) × Avx Δt.

At any instant, half the particles are moving to the right and half are moving to the
left. Therefore, the average number of collisions with the wall during the interval Δt

Definition of the root
mean square speed

The pressure of a perfect gas
according to the kinetic model

1
3

mvx

–mvx

x

Before
collision

After
collision

Fig. 20.1 The pressure of a gas arises from
the impact of its molecules on the walls. 
In an elastic collision of a molecule with 
a wall perpendicular to the x-axis, the 
x-component of velocity is reversed but 
the y- and z-components are unchanged.

Will

Won’t

|vxΔt|

Volume = |vxΔt|A

Area, A

x

Fig. 20.2 A molecule will reach the wall on
the right within an interval Δt if it is within
a distance vxΔt of the wall and travelling to
the right.
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is nNA AvxΔt/V. The total momentum change in that interval is the product of this
number and the change 2mvx:

Momentum change = × 2mvx = =

where M = mNA.
Next, to find the force, we calculate the rate of change of momentum, which is

this change of momentum divided by the interval Δt during which it occurs:

Rate of change of momentum =

This rate of change of momentum is equal to the force (by Newton’s second law of
motion). It follows that the pressure, the force divided by the area, is

Pressure =

Not all the molecules travel with the same velocity, so the detected pressure, p, is the
average (denoted �· · ·�) of the quantity just calculated:

p =

This expression already resembles the perfect gas equation of state.
To write an expression of the pressure in terms of the root mean square speed, c,

we begin by writing the speed of a single molecule, v, as v = vx
2 + vy

2 + vz
2. Because the

root-mean-square speed, c, is defined as c = �v2�1/2 (eqn 20.2), it follows that

c2 = �v2� = �vx
2� + �vy

2� + �vz
2�

However, because the molecules are moving randomly, all three averages are the
same. It follows that c2 = 3�vx

2�. Equation 20.1 follows immediately by substituting
�vx

2� = c2 into p = nM�vx
2�/V.

Equation 20.1 is one of the key results of the kinetic model. We see that, if the root
mean square speed of the molecules depends only on the temperature, then at con-
stant temperature

pV = constant

which is the content of Boyle’s law (Section 1.2). Moreover, for eqn 20.1 to be the
equation of state of a perfect gas, its right-hand side must be equal to nRT. It 
follows that the root mean square speed of the molecules in a gas at a temperature 
T must be

c =
1/2

(20.3)°

We can conclude that the root mean square speed of the molecules of a gas is propor-
tional to the square root of the temperature and inversely proportional to the square
root of the molar mass. That is, the higher the temperature, the higher the root mean
square speed of the molecules, and, at a given temperature, heavy molecules travel
more slowly than light molecules.

Root mean square
speed in a perfect gas
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3RT

M

ABC

1
3

nM�v2
x �

V

nMv2
x

V

nMAv2
x

V

nMAv2
x Δt

V

nmANAv2
xΔt

V

nNA AvxΔt

2V

1
2



748 20 MOLECULES IN MOTION

• A brief illustration

The root mean square speed of N2 molecules (M = 28.02 g mol−1) at 298 K is found from

eqn 20.3 to be

c =
1/2

= 515 m s−1

Sound waves are pressure waves, and for them to propagate the molecules of the gas must

move to form regions of high and low pressure. Therefore, we should expect the speed of

sound in air to be approximately 500 m s−1. The experimental value is 340 m s−1. •

Equation 20.3 is an expression for the mean square speed of molecules. However,
in an actual gas the speeds of individual molecules span a wide range, and the 
collisions in the gas continually redistribute the speeds among the molecules. Before 
a collision, a molecule may be travelling rapidly, but after a collision it may be accel-
erated to a very high speed, only to be slowed again by the next collision. The fraction
of molecules that have speeds in the range v to v + dv is proportional to the width of
the range, and is written f(v)dv, where f(v) is called the distribution of speeds. Note
that, in common with other distribution functions, f(v) acquires physical significance
only after it is multiplied by the range of speeds of interest.

The precise form of f for molecules of a gas at a temperature T was derived by J.C.
Maxwell, and is

f(v) = 4π
3/2

v2e−Mv2/2RT (20.4)

This expression is called the Maxwell distribution of speeds and is derived in the 
following Justification. Let’s consider its features, which are also shown pictorially 
in Fig. 20.3:

1. Equation 20.4 includes a decaying exponential function, the term e−Mv2/2RT. Its
presence implies that the fraction of molecules with very high speeds will be very small
because e−x2

becomes very small when x2 is large.

2. The factor M/2RT multiplying v2 in the exponent is large when the molar mass,
M, is large, so the exponential factor goes most rapidly towards zero when M is large.
That is, heavy molecules are unlikely to be found with very high speeds.

3. The opposite is true when the temperature, T, is high: then the factor M/2RT in
the exponent is small, so the exponential factor falls towards zero relatively slowly as
v increases. In other words, a greater fraction of the molecules can be expected to have
high speeds at high temperatures than at low temperatures.

4. A factor v2 (the term before the e) multiplies the exponential. This factor goes to
zero as v goes to zero, so the fraction of molecules with very low speeds will also be
very small.

5. The remaining factors (the term in parentheses in eqn 20.4 and the 4π) simply
ensure that, when we add together the fractions over the entire range of speeds from
zero to infinity, then we get 1.

To use eqn 20.4 to calculate the fraction of molecules in a given narrow range of
speeds, Δv, we evaluate f(v) at the speed of interest, then multiply it by the width of the
range of speeds of interest, that is, we form f(v)Δv. To use the distribution to calculate
the fraction in a range of speeds that is too wide to be treated as infinitesimal, we eval-
uate the integral:

Fraction in the range v1 to v2 = �
v2

v1

f (v)dv (20.5)

Maxwell distribution
of speeds
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Fig. 20.3 The distribution of molecular
speeds with temperature and molar mass.
Note that the most probable speed
(corresponding to the peak of the
distribution) increases with temperature
and with decreasing molar mass, and
simultaneously the distribution becomes
broader.

interActivity (a) Plot different
distributions by keeping the molar

mass constant at 100 g mol−1 and varying
the temperature of the sample between 
200 K and 2000 K. (b) Use mathematical
software or the Living graph applet from
the text’s web site to evaluate numerically
the fraction of molecules with speeds in the
range 100 m s−1 to 200 m s−1 at 300 K and
1000 K. (c) Based on your observations,
provide a molecular interpretation of
temperature.
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This integral is the area under the graph of f as a function of v and, except in special
cases, has to be evaluated numerically by using mathematical software (Fig. 20.4).

Justification 20.2 The Maxwell distribution of speeds

The Boltzmann distribution is a key result of physical chemistry; it was introduced
in Fundamentals F.5 and treated fully in Section 15.1. It implies that the fraction of
molecules with velocity components vx, vy, vz is proportional to an exponential
function of their kinetic energy, Ek, which is

Ek = mvx
2 + mvy

2 + mvz
2

Therefore, we can use the relation ax +y+z+ · · · = axayaz . . . to write

f = Ke−Ek/kT = Ke− (1––
2 mv2

x+ 1––
2 mv2

y+ 1––
2 mv2

z)/kT = Ke−mv2
x /2kTe−mv2

y /2kTe−mv2
z /2kT

where K is a constant of proportionality (at constant temperature) and fdvxdvydvz is
the fraction of molecules in the velocity range vx to vx + dvx, vy to vy + dvy, and vz to
vz + dvz. We see that the fraction factorizes into three factors, one for each axis, and
we can write f = f(vx)f(vy)f(vz) with

f(vx) = K1/3e−mv2
x /2kT

and likewise for the two other directions.
To determine the constant K, we note that a molecule must have a velocity some-

where in the range −∞ < vx < ∞, so

�
∞

−∞
f(vx)dvx = 1

Substitution of the expression for f(vx) then gives

1 = K 1/3�
∞

−∞
e−mv2

x /2kTdvx = K1/3

1/2

where we have used the standard integral

�
∞

−∞
e−ax2

dx =
1/2

Therefore, K = (m/2πkT)3/2 = (M/2πRT)3/2, where M is the molar mass of the mole-
cules. At this stage we know that

f(vx) =
1/2

e−Mv2
x /2RT (20.6)

The probability that a molecule has a velocity in the range vx to vx + dvx, vy to
vy + dvy, vz to vz + dvz is the product of these individual probabilities:

f(vx)f(vy)f(vz)dvxdvydvz =
3/2

e−Mv2/2RTdvxdvydvz

where v2 = vx
2 + vy

2 + vz
2. The probability f(v)dv that the molecules have a speed in the

range v to v + dv regardless of direction is the sum of the probabilities that the velo-
city lies in any of the volume elements dvxdvydvz forming a spherical shell of radius
v and thickness dv (Fig. 20.5). The sum of the volume elements on the right-hand
side of the last equation is the volume of this shell, 4πv2dv. Therefore, the probabil-
ity that it is in a volume element dvx dvy dvz at a distance v from the origin

f(v) = 4π
3/2

v2e−Mv2/2RT

as given in eqn 20.4.
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Fig. 20.4 To calculate the probability that a
molecule will have a speed in the range v1

to v2, we integrate the distribution between
those two limits; the integral is equal to the
area of the curve between the limits, as
shown shaded here.

vz

vy

vx

v

Thickness,
dv

Surface
area, 4πv2

Fig. 20.5 To evaluate the probability that 
a molecule has a speed in the range v to
v + dv, we evaluate the total probability
that the molecule will have a speed that is
anywhere on the surface of a sphere of
radius v = (vx

2 + vy
2 + vz

2)1/2 by summing the
probabilities that it is in a volume element
dvx dvy dvz at a distance v from the origin.
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c* = (2RT/M)1/2

c = (8RT/πM)1/2

c = (3RT/M)1/2

1 (4/π)1/2 (3/2)1/2

v/(2RT/M)1/2

f(
v)

/4
π(

M
/2

πR
T

)3/
2

Fig. 20.6 A summary of the conclusions 
that can be deduced from the Maxwell
distribution for molecules of molar mass 
M at a temperature T: c* is the most
probable speed, K is the mean speed, and 
c is the root mean square speed.

Example 20.1 Calculating the mean speed of molecules in a gas

What is the mean speed, K, of N2 molecules in air at 25°C?

Method A mean speed is calculated by multiplying each speed by the fraction of
molecules that have that speed, and then adding all the products together. When
the speed varies over a continuous range, the sum is replaced by an integral. To 
employ this approach here, we note that the fraction of molecules with a speed in
the range v to v + dv is f(v)dv, so the product of this fraction and the speed is
vf(v)dv. The mean speed, K, is obtained by evaluating the integral

K = �
∞

−∞

vf(v)dv

with f(v) given in eqn 20.4.

Answer The integral required is

K = 4π
3/2

�
∞

0

v3e−Mv2/2RTdv

= 4π
3/2

× 1–2

2

=
1/2

where we have used the standard result from tables of integrals (or software) that

�
∞

0

x3e−ax2
dx =

Substitution of the data then gives

K =
1/2

= 475 m s−1

where we have used 1 J = 1 kg m2 s−2.

Self-test 20.1 Evaluate the root mean square speed of the molecules by integra-
tion. You will need the integral

�
∞

0

x4 e−ax2
dx =

1/2

[c = (3RT/M)1/2, 515 m s−1]

As shown in Example 20.1, we can use the Maxwell distribution to evaluate the
mean speed, K, of the molecules in a gas:

K =
1/2

(20.7)

We can identify the most probable speed, c*, by differentiating f with respect to v and
looking for the value of v at which the derivative is zero (other than at v = 0 and v = ∞):

c* =
1/2

(20.8)

Figure 20.6 summarizes these results. Note that the mean speed is the value of v that
divides the distribution into two equal areas.
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The relative mean speed, Krel, the mean speed with which one molecule approaches
another, can also be calculated from the distribution:

Krel = 21/2K (20.9)

This result is much harder to derive, but the diagram in Fig. 20.7 should help to show
that it is plausible. The last result can also be generalized to the relative mean speed of
two dissimilar molecules of masses mA and mB:

Krel =
1/2

μ = (20.10)

Note that the molecular masses (not the molar masses) and Boltzmann’s constant, 
k = R /NA, appear in this expression; the quantity μ is called the reduced mass of the
molecules. Equation 20.10 turns into eqn 20.9 when the molecules are identical (that
is, mA = mB = m, so μ = m).

(b) The collision frequency

A qualitative picture of the events taking place in a gas was first described in Section
1.2. The kinetic model enables us to make that picture more quantitative. In particu-
lar, it enables us to calculate the frequency with which molecular collisions occur and
the distance a molecule travels on average between collisions.

We count a ‘hit’ whenever the centres of two molecules come within a distance d of
each other, where d, the collision diameter, is of the order of the actual diameters 
of the molecules (for impenetrable hard spheres d is the diameter). As we show in the
following Justification, we can use kinetic model to deduce that the collision fre-
quency, z, the number of collisions made by one molecule divided by the time inter-
val during which the collisions are counted, when there are N molecules in a volume
V is

z = σKrelN (20.11a)°

with N = N/V and Krel given in eqn 20.10. The area σ = πd2 is called the collision cross-
section of the molecules. Some typical collision cross-sections are given in Table 20.1.
In terms of the pressure

z = (20.11b)°

Justification 20.3 Using the kinetic model to calculate the collision frequency

When a molecule travels through a gas it sweeps out a ‘collision tube’ of area σ = πd2

and length λ = KrelΔt where Krel is the relative velocity and Δt is the interval before 
the first collision (Fig. 20.8). There is one molecule in this tube of volume σλ, so 
the number density is 1/σλ = 1/σKrelΔt. This number density must be equal to the
bulk number density, N = N/V = p/kT, so from p/kT = 1/σKrelΔt we can infer that 
Δt = kT/σKrel p. The collision frequency, z, is the inverse of the time between colli-
sions, so z = 1/Δt = σKrel p/kT, as in eqn 20.11b.

Equation 20.11a shows that, at constant volume (and therefore constant number
density), the collision frequency increases with increasing temperature. The reason

Collision frequency in
terms of the pressure

σKrel p

kT

Collision
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v
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v

0 21/2v
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Fig. 20.7 A simplified version of the
argument to show that the relative mean
speed of molecules in a gas is related to 
the mean speed. When the molecules are
moving in the same direction, the relative
mean speed is zero; it is 2v when the
molecules are approaching each other. A
typical mean direction of approach is from
the side, and the mean speed of approach is
then 21/2v. The last direction of approach is
the most characteristic, so the mean speed
of approach can be expected to be about
21/2v. This value is confirmed by more
detailed calculation.

A brief comment
The reduced mass arises whenever relative
motion of two particles is encountered. It
also occurs in the hydrogen atom when
considering the relative motion of the
electron and nucleus (Section 9.1) and in the
description of the vibration of a diatomic
molecule (Section 12.8).

Table 20.1* Collision cross-sections

σ/nm2

C6H6 0.88

CO2 0.52

He 0.21

N2 0.43

* More values are given in the Data section.
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Fig. 20.8 The calculation of the collision
frequency and the mean free path in 
the kinetic theory of gases.

for this increase is that the relative mean speed increases with temperature (eqns 20.9
and 20.10). Equation 20.11b shows that, at constant temperature, the collision fre-
quency is proportional to the pressure. Such a proportionality is plausible for, the
greater the pressure, the greater the number density of molecules in the sample, and
the rate at which they encounter one another is greater even though their average speed
remains the same. For an N2 molecule in a sample at 1 atm and 25°C, z ≈ 5 × 109 s−1,
so a given molecule collides about 5 × 109 times each second. We are beginning to 
appreciate the timescale of events in gases.

(c) The mean free path

Once we have the collision frequency, we can calculate the mean free path, λ
(lambda), the average distance a molecule travels between collisions. As implied by
the derivation in Justification 20.3

λ = KrelΔt = (20.12)

Substitution of the expression for z in eqn 20.11b gives

λ = (20.13)

Doubling the pressure reduces the mean free path by half. A typical mean free path in
nitrogen gas at 1 atm is 70 nm, or about 103 molecular diameters. Although the tem-
perature appears in eqn 20.13, in a sample of constant volume, the pressure is pro-
portional to T, so T/p remains constant when the temperature is increased. Therefore,
the mean free path is independent of the temperature in a sample of gas in a container
of fixed volume. The distance between collisions is determined by the number of
molecules present in the given volume, not by the speed at which they travel.

In summary, a typical gas (N2 or O2) at 1 atm and 25°C can be thought of as a 
collection of molecules travelling with a mean speed of about 500 m s−1. Each
molecule makes a collision within about 1 ns, and between collisions it travels about
103 molecular diameters. The kinetic model of gases is valid (and the gas behaves
nearly perfectly) if the diameter of the molecules is much smaller than the mean free
path (d << λ), for then the molecules spend most of their time far from one another.

IMPACT ON ASTROPHYSICS

I20.1 The Sun as a ball of perfect gas

The kinetic model of gases is valid when the size of the particles is negligible compared
with their mean free path. It may seem absurd, therefore, to expect the kinetic model
and, as a consequence, the perfect gas law, to be applicable to the dense matter of 
stellar interiors. In the Sun, for instance, the density at its centre is 1.50 times that of
liquid water and comparable to that of water about halfway to its surface. However,
we have to realize that the state of matter is that of a plasma, in which the electrons
have been stripped from the atoms of hydrogen and helium that make up the bulk of
the matter of stars. As a result, the particles making up the plasma have diameters
comparable to those of nuclei, or about 10 fm. Therefore, a mean free path of only 
0.1 pm satisfies the criterion for the validity of the kinetic theory and the perfect gas
law. We can therefore use pV = nRT as the equation of state for the stellar interior.
Although the Coulombic interaction between charged particles is strong, at the high
temperatures of stellar interiors the kinetic energy of the charged particles is very
much greater and so ‘kinetic-energy only’ is a tolerable approximation.

Mean free path in
terms of the pressure

kT
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Mean free path
Krel

z
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As for any perfect gas, the pressure in the interior of the Sun is related to the mass
density, ρ = m/V, by p = ρRT/M. Atoms are stripped of their electrons in the interior
of stars so, if we suppose that the interior consists of ionized hydrogen atoms, the
mean molar mass is one-half the molar mass of hydrogen, or 0.5 g mol−1 (the mean of
the molar mass of H+ and e−, the latter being virtually 0). Halfway to the centre of the
Sun, the temperature is 3.6 MK and the mass density is 1.20 g cm−3 (slightly denser
than water); so the pressure there works out as 7.2 × 1013 Pa, or about 720 million 
atmospheres.

We can combine this result with the expression for the pressure from the kinetic
model (eqn 20.1). Because the total kinetic energy of the particles is Ek = Nmc 2,
we can write p = Ek /V. That is, the pressure of the plasma is related to the kinetic
energy density, ρk = Ek /V, the kinetic energy of the molecules in a region divided 
by the volume of the region, by p = ρk. It follows that the kinetic energy density half-
way to the centre of the Sun is about 0.11 GJ cm−3. In contrast, on a warm day 
(25°C) on Earth, the (translational) kinetic energy density of our atmosphere is only
0.15 J cm−3.

20.2 Collisions with walls and surfaces

Key point The collision flux, ZW, is the number of collisions with an area in a given time interval

divided by the area and the duration of the interval.

The key result for accounting for transport in the gas phase (and in Chapter 23 for the
discussion of surface chemistry) is the rate at which molecules strike an area, which
may be an imaginary area embedded in the gas, or part of a real wall. The collision
flux, ZW, is the number of collisions with the area in a given time interval divided by
the area and the duration of the interval. The collision frequency, the number of hits
per second, is obtained by multiplication of the collision flux by the area of interest.
We show in the following Justification that the collision flux is

ZW = (20.14)°

When p = 100 kPa (1.00 bar) and T = 300 K, ZW ≈ 3 × 1023 cm−2 s−1 for O2.

Justification 20.4 The collision flux

Consider a wall of area A perpendicular to the x-axis (as in Fig. 20.2). If a molecule
has vx > 0 (that is, it is travelling in the direction of positive x), then it will strike the
wall within an interval Δt if it lies within a distance vxΔt of the wall. Therefore, all
molecules in the volume Avx Δt, and with positive x-component of velocities, will
strike the wall in the interval Δt. The total number of collisions in this interval is
therefore the volume AvxΔt multiplied by the number density, N , of molecules.
However, to take account of the presence of a range of velocities in the sample, 
we must sum the result over all the positive values of vx weighted by the probability
distribution of velocities (eqn 20.6):

Number of collisions = N AΔt�
∞

0

vx f(vx)dx

The collision flux is the number of collisions divided by A and Δt, so

ZW = N �
∞

0

vx f(vx)dx

Collision flux
p

(2πmkT)1/2

2
3

2
3

1
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Exercises

20.1(a) Determine the ratios of (a) the mean speeds, (b) the mean kinetic
energies of H2 molecules and Hg atoms at 20°C.

20.1(b) Determine the ratios of (a) the mean speeds, (b) the mean kinetic
energies of He atoms and Hg atoms at 25°C.

20.2(a) A 1.0 dm3 glass bulb contains 1.0 × 1023 H2 molecules. If the pressure
exerted by the gas is 100 kPa, what are (a) the temperature of the gas, (b) the
root mean square speeds of the molecules? (c) Would the temperature be
different if they were O2 molecules?

20.2(b) The best laboratory vacuum pump can generate a vacuum of about 
1 nTorr. At 25°C and assuming that air consists of N2 molecules with a
collision diameter of 395 pm, calculate (a) the mean speed of the molecules,
(b) the mean free path, (c) the collision frequency in the gas.

20.3(a) Use the Maxwell distribution of speeds to estimate the fraction 
of N2 molecules at 500 K that have speeds in the range 290 to 300 m s−1.

20.3(b) Use the Maxwell distribution of speeds to estimate the fraction of CO2

molecules at 300 K that have speeds in the range 200 to 250 m s−1.

20.4(a) Find an expression for the root mean square deviation of the speed of
molecules in a gas from its mean value, Δc = {�c2� − �c�2}1/2.

20.4(b) Find a relation between �c2�1/2 and �c4�1/4 for molecules in a gas at a
temperature T.

20.5(a) At what pressure does the mean free path of argon at 25°C become
comparable to the size of a 1 dm3 vessel that contains it? Take σ = 0.36 nm2.

20.5(b) At what pressure does the mean free path of argon at 25°C become
comparable to the diameters of the atoms themselves?

20.6(a) At an altitude of 20 km the temperature is 217 K and the pressure
0.050 atm. What is the mean free path of N2 molecules? (σ = 0.43 nm2.)

20.6(b) At an altitude of 15 km the temperature is 217 K and the pressure 
12.1 kPa. What is the mean free path of N2 molecules? (σ = 0.43 nm2.)

20.7(a) How many collisions does a single Ar atom make in 1.0 s when the
temperature is 25°C and the pressure is (a) 10 atm, (b) 1.0 atm, (c) 1.0 μatm?

20.7(b) How many collisions per second does an N2 molecule make at an
altitude of 15 km? (See Exercise 20.6b for data.)

20.8(a) Calculate the mean free path of molecules in air using σ = 0.43 nm2 at
25°C and (a) 10 atm, (b) 1.0 atm, (c) 1.0 μatm.

20.8(b) Calculate the mean free path of carbon dioxide molecules using 
σ = 0.52 nm2 at 25°C and (a) 15 atm, (b) 1.0 bar, (c) 1.0 Torr.

20.9(a) A solid surface with dimensions 2.5 mm × 3.0 mm is exposed to argon
gas at 90 Pa and 500 K. How many collisions do the Ar atoms make with this
surface in 15 s?

20.9(b) A solid surface with dimensions 3.5 mm × 4.0 cm is exposed to helium
gas at 111 Pa and 1500 K. How many collisions do the He atoms make with
this surface in 10 s?

20.10(a) An effusion cell has a circular hole of diameter 2.50 mm. If the molar
mass of the solid in the cell is 260 g mol−1 and its vapour pressure is 0.835 Pa at
400 K, by how much will the mass of the solid decrease in a period of 2.00 h?

20.10(b) An effusion cell has a circular hole of diameter 3.00 mm. If the molar
mass of the solid in the cell is 300 g mol−1 and its vapour pressure is 0.224 Pa at
450 K, by how much will the mass of the solid decrease in a period of 24.00 h?

20.11(a) A solid compound of molar mass 100 g mol−1 was introduced into a
container and heated to 400°C. When a hole of diameter 0.50 mm was opened
in the container for 400 s, a mass loss of 285 mg was measured. Calculate the
vapour pressure of the compound at 400°C.

20.11(b) A solid compound of molar mass 200 g mol−1 was introduced into a
container and heated to 300°C. When a hole of diameter 0.50 mm was opened
in the container for 500 s, a mass loss of 277 mg was measured. Calculate the
vapour pressure of the compound at 300°C.

20.12(a) A manometer was connected to a bulb containing carbon dioxide
under slight pressure. The gas was allowed to escape through a small pinhole,
and the time for the manometer reading to drop from 75 cm to 50 cm 
was 52 s. When the experiment was repeated using nitrogen (for which 
M = 28.02 g mol−1) the same fall took place in 42 s. Calculate the molar mass
of carbon dioxide.

20.12(b) A manometer was connected to a bulb containing nitrogen under
slight pressure. The gas was allowed to escape through a small pinhole, and the
time for the manometer reading to drop from 65.1 cm to 42.1 cm was 18.5 s.
When the experiment was repeated using a fluorocarbon gas, the same fall
took place in 82.3 s. Calculate the molar mass of the fluorocarbon.

20.13(a) A space vehicle of internal volume 3.0 m3 is struck by a meteor and 
a hole of radius 0.10 mm is formed. If the oxygen pressure within the vehicle 
is initially 80 kPa and its temperature 298 K, how long will the pressure take 
to fall to 70 kPa?

20.13(b) A container of internal volume 22.0 m3 was punctured, and a hole 
of radius 0.050 mm was formed. If the nitrogen pressure within the vehicle is
initially 122 kPa and its temperature 293 K, how long will the pressure take to
fall to 105 kPa?

20.14(a) Calculate the flux of energy arising from a temperature gradient of
2.5 K m−1 in a sample of argon in which the mean temperature is 273 K.

20.14(b) Calculate the flux of energy arising from a temperature gradient of
3.5 K m−1 in a sample of hydrogen in which the mean temperature is 260 K.

20.15(a) Use the experimental value of the thermal conductivity of neon
(Table 20.2) to estimate the collision cross-section of Ne atoms at 273 K.

20.15(b) Use the experimental value of the thermal conductivity of nitrogen
(Table 20.2) to estimate the collision cross-section of N2 molecules at 298 K.

20.16(a) In a double-glazed window, the panes of glass are separated by 
5.0 cm. What is the rate of transfer of heat by conduction from the warm
room (25°C) to the cold exterior (−10°C) through a window of area 1.0 m2?
What power of heater is required to make good the loss of heat?

20.16(b) Two sheets of copper of area 1.50 m2 are separated by 10.0 cm. 
What is the rate of transfer of heat by conduction from the warm sheet (50°C)
to the cold sheet (−10°C). What is the rate of loss of heat?

20.17(a) Use the experimental value of the coefficient of viscosity for neon
(Table 20.2) to estimate the collision cross-section of Ne atoms at 273 K.

20.17(b) Use the experimental value of the coefficient of viscosity for 
nitrogen (Table 20.2) to estimate the collision cross-section of the molecules
at 273 K.

20.18(a) Calculate the inlet pressure required to maintain a flow rate of 
9.5 × 105 dm3 h−1 of nitrogen at 293 K flowing through a pipe of length 8.50 m
and diameter 1.00 cm. The pressure of gas as it leaves the tube is 1.00 bar. 
The volume of the gas is measured at that pressure.
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