1 litre of polluted water is extracted using 50 mL of hexane. The following table shows the results obtained with the separation of hexane extract constituents on a DB-5 column (30 m long), using helium as a carrier gas.

Compound	Retention time (min)	Peak width at half- height (min)	Peak area
Benzene	4.33	0.16	23667
Naphthalene	4.86	0.21	91843
Anthracene	5.91	0.24	30975
Pyrene	7.25	0.30	56384
Chrysene	8.85	0.33	18402

- 1. If the velocity of the mobile phase is 13.30 cm/s, calculate the dead time $t_{\rm M}$ in min.
- 2. If the temperature is programmed as: initial temperature: 70 °C (for 3 min), then increases at 15°/min rate till 150 °C (for 10 min).
 What will be the temperature of oven after 8 min from the injection time?
- 3. Under the same conditions, a compound **M** gives a retention factor **K** = **1.37**. What is the compound **M**?
- 4. A reference sample containing **32.00 mg/mL** naphthalene was injected in the same conditions and gave a peak at **4.81 min** with area of **160477**. What is the concentration of naphthalene in the polluted water sample (ppm)?