5) Show that the following set of functions are orthogonal on the given
intervals and find the norm of each function

a) {sin 2 sin %%, sin % sin 4% sin %, .} [0,

b) {1, cos *, sin %} mn=12 3,4.“,[0,[4]

¢) {sin(2n+1)};n=0,1,2,3,4.,0.3]
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3. a) Find the Fourier series for the function

0, -r<z<0
f(x)—{:rz, 0<z<m.

b) Use a) to show that

( l)n 71'2
Z(n+1 Z(n-%-l 12

n=0

c) Use b) to obtain a numerical series which represents the value 183.

DEFINITION 11.2.1 Fourier Series

The Fourier series of a function f defined on the interval (—p, p) 1s given by

flx ]_—+2({1”LD*~?T+IJ ain?r) (8)
= n=1
1 [
where g = F_?J fix) dx (9)
—p
| nr
=F_3" ffr]c-::ﬁ—rr:h (10)
1
=;—?J flx) Hln_lﬁrt‘. (11)




CONVERGENCE OF A FOURIER SERIES The following theorem gives suffi-
cient conditions for convergence of a Fourier series at a point.

THEOREM 11.2.1 Conditions for Convergence

Let fand f' be piecewise continuous on the interval (—p, p); that is, let fand [
be continuous except at a finite number of points in the interval and have only
finite discontinuities at these points. Then the Fourier series of f on the interval
converges to f(x) at a point of continuity. At a point of discontinuity the Founer
series converges to the average

flx+) + fx=)

" El

where f(x+) and f(x—) denote the limit of fat x from the nght and from the left,
respectively.”

For a proof of this theorem you are referred to the classic text by Churchill and
Brown."

*In other words, for x a point in the interval and h = 0,
flx+) = fllirrll:lJl"LJ.' +h), flx-)= gin}]ﬂx — h.

"Ruel V. Churchill and James Ward Brown, Fourier Series and Boundary Value Problems (New York:
McGraw-Hill).
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I EXAMPLE 2 Convergence of a Point of Discontinuity

The function (12) in Example | satishes the conditions of Theorem 11.2.1. Thus
for every x in the interval (— g, ), except at x = 0, the senes (13) will converge to
fix). At x = 0 the function is discontinuous, so the series ( 13) will converge to

fOH) +fl0-) _=+0_ =
2 7 7

PERIODIC EXTENSION Observe that each of the functions in the basic set (1)
has a different fundamental period”—namely, 2p/n, n = 1 —but since a positive in-
teger multiple of a penod is also a period. we see that all of the functions have in
common the period 2p. (Venfy.) Hence the nght-hand side of (2) is 2p-penodic;
indeed, 2p is the fundamental period of the sum. We conclude that a Fourier series
not only represents the function on the interval (—p, p), but also gives the periodic
extension of f outside this interval. We can now apply Theorem 11.2.1 to the pen-
odic extension of f, or we may assume from the outset that the given function is
perindic with period 2p; that is, fix + 2p) = fix). When f is piecewise continuous
and the right- and lefi-hand denvatives exist at x = —p and x = p, respectively, then
the senes (8) converges to the average

fip—) + f(—p+)
2

at these endpoints and to this value extended penodically to =3p, =3p, =7p, and
50 Of.
The Fourner series in (13) converges to the peniodic extension of (12) on the

entire x-axis. At 0, =27, *4 5, .. and at 5, 3w, =57, ... the series converges
to the values
JFi0+) -El-fl.’ll—] _ g and fla—) -I:?ff—f.-r+] _ 0.

respectively. The solid dots in Figure 11.2.2 represent the value /2.
v
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FIGURE 11.2.2 Penodic extension of function shown in Figure 11.2.1



The function in Problem 3 is discontimuous a6 2 = 7, 80 the corresponding Fourlr series converges

and

n? X -1 11
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From Problem 17
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4. Test whether each of the following given functions is odd or even, then
expand it in a cosine or sine series

a) f(z) = cosz|, |o| <=

b) g(z) =zcosz, |z|<m

1, -2<z< -1
-z, -1<z <0
¢) h(z)= z, 0<z<1
1, 1<z<?2
d) k(z) = 2% |z|, |z]| <1
T+ 1, -3<z<0
€) M(I}z{ -z +1, 0z <3

THEOREM 11.3.1 Properties of Even/Odd Functions

(a) The product of two even functions is even.

(b) The product of two odd functions is even.

(¢} The product of an even function and an odd function is odd.
(d) The sum (difference) of two even functions 1s even.

(e) The sum (difference) of two odd functions 1s odd.

(f) If fiseven, then |2, fix)dx = 28 f(x) dx.

(g) Iffisodd, then [7, f(x) dx = 0.

DEFINITION 11.3.1 Fourier Cosine and Sine Series

(1) The Fourier series of an even function on the interval (—p, p) is the
COSINe series

a1 i nr
filx) = TI] + ¥ a, cos - x, (1)
£ n=1
TP
where g = —J flx)dx (2)
PJo

3 ‘I':- —

L — - fm

a, = —J f(x) cos —x dx. (3)
P Jo P




(11) The Fourier series of an odd function on the interval (—p, p) 1s the sine

SEries
flx) = j.h,: sin ?x._, (4)
n=1
2 (r nar
where h,,=—J fix) sin —x dx. (5)
rlo P
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5. Find the half range sine series for the functions

a) flz)=

b) g(z)

c) h(z)=

# % \
%
A}
|

1,

X

L

FIGURE 11.3.7 Even reflection

FIGURE 11.3.8 0Odd reflection
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flx)=flx+L}

T

L

FIGURE 11.3.9 Identity reflection

T, 0<z<ml2
T — I, tf2<z<m
=z—1% 0<z<1
x, 0<z<l1

1<z <2

HALF-RANGE EXPANSIONS Throughout the preceding discussion it was
understood that a function f was defined on an interval with the origin as its
midpoint—that 1s, (—p, p). However, in many instances we are interested in repre-
senting a function that is defined only for 0 < x < L by a trigonometric series. This
can be done in many different ways by supplying an arbitrary definition of f(x) for
—L < x < (. For brevity we consider the three most important cases. If y = fix) is
defined on the interval (0, L), then

(1)  reflect the graph of f about the y-axis onto (—L, 0); the function is now
evenon (—L, L) (see Figure 11.3.7); or
(1r) reflect the graph of fthrough the origin onto (—L, 0); the function is now

odd on (—L, L) (see Figure 11.3.8); or
(i) define fon (—L, 0) by y = fix + L) (see Figure 11.3.9).

Note that the coefficients of the series (1) and (4) utilize only the definition of
the function on (0), p) (that is, half of the interval (—p, p)). Hence in practice there
i1s no actual need to make the reflections described in (1) and (ir). If f1s defined for
() < x < L, we simply 1dentify the half-period as the length of the interval p = L. The
coefficient formulas (2), (3). and (3) and the corresponding series yield either an even
or an odd periodic extension of period 2L of the onginal function. The cosine and
sine series that are obtained in this manner are known as half-range expansions.
Finally. in case (1) we are defining the function values on the interval (—L, 0) to be
same as the values on (0, L). As in the previous two cases there is no real need to do
this. It can be shown that the set of functions in (1) of Section 11.2 is orthogonal on
the interval [a, a + 2p] for any real number a. Choosing @ = —p, we obtain the
limits of integration in (9), (10), and (11) of that section. But for @ = 0 the limits of
integration are from x = () to x = 2p. Thus if f is defined on the interval (0, L), we
identify 2p = L or p = L /2. The resulting Fourier series will give the periodic exten-
sion of f with period L. In this manner the values to which the series converges will

be the same on (—L. 0) as on (0, L).
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6. Find the half range cosine series for the functions
a) f(z) =32(1—-12),0<z<1
—z, 0<z<ml2
b) ¢(=) = T — T, 7/2 <z <.
c) h(z) =1—cosz, 0 <z <.

Exercises
1. Find the complex form of the Fourier series for:
a) f(z)=e€*, —m<z<m
b) g(z) =e™*, —1<z<1



