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Fist Midterm Exam Solutions for math 203   ( 2nd semester 1445) 

 

1. (5pts) Determine whether the sequence     ൜ ቀ
మିଶ

మାଷ
ቁ



ൠ   converges or diverges 

  and if converges find its imit. 

Solution: 

   Let  𝑦 = 𝑓(𝑥) = ቀ
௫మିଶ

௫మାଷ
ቁ

௫

  𝑡ℎ𝑒𝑛  𝑓(𝑛) =  ቀ
మିଶ

మାଷ
ቁ



   and  
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𝐿𝑛 𝑦 =  𝐿𝑖𝑚
௫→ஶ

 𝐿𝑛 ቆ
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ቇ

௫

=  𝐿𝑖𝑚
௫→ஶ

  𝑥[𝐿𝑛(𝑥ଶ − 2) − 𝐿𝑛(𝑥ଶ + 3)] =   

 𝐿𝑖𝑚
௫→ஶ

  
ଵ
భ

ೣ

 [𝐿𝑛(𝑥ଶ − 2) − 𝐿𝑛(𝑥ଶ + 3)]  𝐿
ᇱ𝐻𝑜𝑝𝑖𝑡𝑎𝑙
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    So the sequence ൜ ቀ
మିଶ

మାଷ
ቁ



ൠ  converges and lim
→ஶ

ቀ
మିଶ

మାଷ
ቁ



= 1. 
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2.(3 pts) Find the sum of the series: 

  cos ൬
1

𝑛
൰ − 𝑐𝑜𝑠 ൬

1

𝑛 + 3
൰൨  

ஶ

ୀଵ

  

Solution: 

∑  ቂcos ቀ
ଵ


ቁ − 𝑐𝑜𝑠 ቀ

ଵ

ାଷ
ቁቃ  ஶ

ୀଵ = ∑ 𝑎
ஶ
ୀଵ       

 

𝑎ଵ = 𝑐𝑜𝑠(1) − 𝑐𝑜𝑠 ൬
1

4
൰ 

𝑎ଶ = 𝑐𝑜𝑠 ൬
1

2
൰ − 𝑐𝑜𝑠 ൬

1

5
൰ 

𝑎ଷ = 𝑐𝑜𝑠 ൬
1

3
൰ − 𝑐𝑜𝑠 ൬

1

6
൰ 

𝑎ସ = 𝑐𝑜𝑠 ൬
1

4
൰ − 𝑐𝑜𝑠 ൬

1

7
൰ 

 
.
.
.
 

 

𝑎ିଷ = 𝑐𝑜𝑠 ൬
1

𝑛 − 3
൰ − 𝑐𝑜𝑠 ൬

1

𝑛
൰ 

         𝑎ିଶ = 𝑐𝑜𝑠 ൬
1

𝑛 − 2
൰ − 𝑐𝑜𝑠 ൬

1

𝑛 + 1
൰ 

           𝑎ିଵ = 𝑐𝑜𝑠 ൬
1

𝑛 − 1
൰ − 𝑐𝑜𝑠 ൬

1

𝑛 + 2
൰ 

𝑎 = 𝑐𝑜𝑠 ൬
1

𝑛
൰ − 𝑐𝑜𝑠 ൬

1

𝑛 + 3
൰. 
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                                                                     −𝑐𝑜𝑠 ൬
1

𝑛 + 1
൰ − 𝑐𝑜𝑠 ൬

1

𝑛 + 2
൰ − 𝑐𝑜𝑠 ൬

1

𝑛 + 3
൰ 

 

and           - SLim n
n
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Therefore     

  cos ൬
1

𝑛
൰ − 𝑐𝑜𝑠 ൬

1

𝑛 + 3
൰൨  

ஶ

ୀଵ

=    ( ) ቆ ቇ ቆ ቇ − 3.  

 

 

 

 

 

 

 

3.(5pts) Test the convergence of the series  
n

n e

n)cos(3
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Solution: 

   Let    
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 is a geometric series with  1
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  and by the basic comparison test the series     
)cos(3

1
n

n e

n




 converges. 

 

 

4.(6pts)  Find the radius and the interval of convergence for the power series  

∑   
(௫ାଶ)

 (ିହ)
ஶ
ୀଵ   

   Solution: 

Taking  
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n
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 By the ratio test, the series converges if     1   2 
5

1
  x   or 5  2   x  

   That is   525  x    3      7-     x   . 
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  If 3x   we have the series   


1

)1(
  

n

n

n
  which converges by the  

alternating series test,   and     If 7x   we get the series   


1

1
  

n n
  which 

diverges by the  integral test. So 

 

  The interval of convergence is   3  ,  7-I   and the radius of convergence 

is   5    r  . 

 

      

 

 

 

5.(6pts) Find the power series representation for function  
 21

)(
x

x
xf


  

and use its first three nonzero terms to approximate  the integral  
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x
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Solution: We know that   1       
1

1
 

0








u

u
u

n

n   taking xu   we get 
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nn   differentiating both sides, we get 
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Replacing  𝑥  𝑏𝑦  𝑥ଶ  we get    
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