College of Sciences
 Department of Mathematics

First Mid Term

Math 550

Exercise 1. Let $n \geq 1$.

1. Prove that

$$
x y \leq \frac{x^{2}}{2}+\frac{y^{2}}{2}
$$

for all $x, y \geq 0$.
2. Deduce that for all $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$

$$
\begin{gathered}
\left|\sum_{k=1}^{n} a_{k} b_{k}\right| \leq\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n} b_{k}^{2}\right)^{\frac{1}{2}} \\
\left(\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{\frac{1}{2}}+\left(\sum_{k=1}^{n} b_{k}^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

3. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Prove that $N_{2}(x)=\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{\frac{1}{2}}$ is a norm on \mathbb{R}^{n}.

Exercise 2.

1. The number π has an infinite decimal expansion of the form $\pi=3.14159265 \ldots$
(a) Find the floating-point form of π using five-digit chopping.
(b) Find the floating-point form of π using five-digit rounding.
2. Suppose that $f l(y)$ is a k-digit chopping approximation to y. Show that

$$
\left|\frac{y-f l(y)}{y}\right| \leq 10^{-k+1}
$$

Exercise 3.

1. Show that the equation $\sin (x)=0.8 x$ has a solution in the interval $[1,1.5]$.
2. Use four steps of the Bisection method to find an approximation of the root of the equation $\sin (x)=0.8 x$ starting with the interval $[1,1.5]$.
3. How many bisection iterations will be required to locate this root in the interval $[1,1.5]$ to accuracy of $\varepsilon=10^{-3}$.
