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Abstract
Halfmetallic ferromagnetism received remarkable attention due to its immense technological
applications in spintronic. In this perspective, thiospinels ZnFe2S/Se4 is addressed by employing
density functional theory (DFT) for spintronics and thermoelectric devices. The optimized energy
versus volume leads to the confirmation of the Ferromagnetic (FM) states stability of both spinels. The
formation energy confirms the thermodynamic stability. TDOS and PDOS are determined to confirm
spin polarization and half-metallic ferromagnetism. Ferromagnetism is explored by exchange energies
andmagneticmoments. In addition, thermoelectric characteristics are explored by electrical and
thermal conductivities, Seebeck coefficient, and power factor to evaluate their potential in thermo-
electric applications.

1. Introduction

Spintronic is an emerging field in the scientific research community and is defined as a novel type of electronics
thatmanipulates electrons by charge and spin of the electrons [1–3]. Its recent development begins since in 1988
with the invention ofGMR. [4]. Halfmetal can be defined in terms of spin polarization (SP). Spin-polarized
leads to resolving the heat problems that occur in IC and various electronic devices.Materials with high spin
polarization, highmagnetic phase transition (close to room temperature), and highmagneticmoment are
required to utilize in spintronic technology.Materials which do not exhibit spin polarization are diamagnetic
because of unchangedDOS in both channels. However, asymmetric exist in ferromagneticmaterials because of
the exchangemechanismwhich limits SP less than unity. On the other hand, half-metallic contains states at the
Fermi level in one channel and insulators in the second channel [5]. Thus, thematerials persist 100%
polarization and are highly recommendedmaterials for spintronics. The discovery of halfmetalsmade a great
contribution to thefield of spintronics due to their technological implications in efficient spintronic devices
includingmagnetic recording, electronicmemory, and effectivemagnetic sensor [6–8].
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Over the last few decades, researchers have been focused onmany compounds, including (half, full and
quaternary)Heusler alloys [9, 10], dilute semiconductor [11], transitionmetal oxides [12], Spinels FeO4 [13],
perovskites BaBkO3 [14], double perovskites [15] and halide double perovskites [16]. Looking for halfmetal’s
materials with highCurie temperature at RThas been focused on formore than 15 years. A special class of
materials called spinels with cubic structures generalized by the formula AB2O4with unique properties has
attractedmore attention [17, 18]. To tune the physical properties of such complex crystals their presentmultiple
degrees of freedom. This class ofmaterials has diverse properties including its potential application in
photocatalytic degradation [19–21], charge storing devices [22], thermoelectricity [23] energy conversion
applications [24]. Thiospinels have several desirable optical properties, including transparency across at large
photosensitivity [25], and nonlinear optical susceptibility [26] all of whichmake them capable candidates for
optoelectronic devices. Thiospinels (Zn/Hg) In2S4 are used in terms of transport properties for energy
conversion devices [27].Moreover, XIn2S4(X=Cd,Mg) has the potential ability for optoelectronic devices [28].

Ferromagnetismmaterials with semiconducting nature are the best option for spintronic applications. The
ferromagnetic spinel semiconductors AB2X4 (A=Cu,Hg, Cd, B=Cr, andX= S, Se) arewell-knownmagnetic
semiconductors, for instance, CuCr2Se4 [29–31]. Further, the Curie temperature range 84K–430K, and
ferromagnetic semiconductor behaviormake them appealing for spintronics [32]. Spinel ferromagnetic
materials play a key role regarding ferroelectric, memory, and spintronic applications [33, 34]. Owing to
ColossalMagnetoresistance in the transitionmetal ferro-spinelmaterials offers a fascinating platform for
researchers [35, 36]. The ferromagnetic characteristics ofMgCr2S4 andMgMn2S4 are considered excellent FM
[37, 38]. Q.Mahmood et alworked on ferromagnetism inMgCr2X4(X= S, Se) [39]. Recently,Mehmood et al
demonstrated themagnetic behavior ofMgPr2(S/Se)2 for spintronic applications byDFT calculation [40].
Moreover, various properties of Spinels Ca(V/Mn)2S4 have been investigated computationally including
structural,magnetic, and thermoelectric [41].

The above vibrant review ensures that there is no literature available on Spinel’s ZnFe2S/Se4 regarding their
half-metallic ferromagnetism and transport properties. In this article, we used TB-mBJ to determine electronic
band structures, the partial and total density of states, and the half-metallic character of Zn-based thiospinels.
The ferromagnetismdue to exchangemechanism and spin polarizationwithout clustering effect is the primary
goal of our research. Thermoelectric parameters are investigated by employing BoltzTrap code. The study of the
effect of temperature, and thermal conductivity on the spin of electrons large effect the reliability of the devices.
Therefore, the effects of these parameters are also discussed in detail. The theoretical data presented in this work
can cover the lack of physical properties information on the ZnFe2S/Se4 compounds.

2. Computational details

Weemployed the full-potential linearized augmented planewavemethod FP-APWrealized in theWIEN2K
packagewithin the framework ofDFT to calculate various properties including structural, electronic,magnetic,
and thermoelectric [42–44]. For reducing interatomic forces in electronic structures, optimization has been
done through PBEsol approximation. The structural characteristics are calculated by Perdew–Burke–Ernzerhof
PBEsol [45, 46] andmodifiedBecke Johnson potential of Trans andBlaha (TB-mBJ) [47] because PBEsol was
analyzed the ground state propertiesmore accurately but underestimate the electronic bandgap. Therefore, to
improve the bandgap accurately, the TB-mBJ potential has been implemented over the PBEsol approximation.
The solution of the electronic system inside themuffin-tin region is taken spherically harmonic. The k-mesh of
the order 12× 12× 12 has been selected as the point at which the energy is released by the system [48]. The
convergence parameters are adjusted as KmaxxRMT=8.0,muffin radius (RMT), andKmax wave vector in the
reciprocal lattice, Gaussian factorGmax=18, and angularmomentumℓmax=10. The changewas converged
up to 0.001mRy. Furthermore, the TB-mBJ converged energy and the optimized electronic structures were used
to calculate the thermoelectric behavior through classical Boltzmann transport theory by using BoltzTraP
Package [49].

3. Result and discussion

3.1. Structural analysis
To optimize the cubic crystal structure of thiospinels ZnFe2(S/Se)4 with Fd-3m space groupwe have used
PBEsol approximation. The crystal structure of the Zn-based thiospinels is presented infigure 1. The relaxation
process is used for atomic positions with Zn (0.125, 0.125, and 0.125), Fe (0.5, 0.5, and 0.5) andO (0.25, 0.25, and
0.25)which are in accordancewith the space group Fd-3m.

The optimized ZnFe2(S/Se)4 for FMandAFM states are presented in figure 2. The planned analogy of FM
andAFMrevealed that ZnF2(S/Se)4 possess ferromagnetic nature owing to their lower energy. Similar results are
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evident from the literature of XCr2O4 (X=Zn, Cd), andAV2O4 (A=Zn, Cd,Hg)which ensure the lowest
energy in FM states confirm its stability. Therefore, the consistency of calculated results with the existing
literature is proof of the reliability of the study [50, 51].

The formation energy of studied compounds have been calculated by the relation

D = - - -H E Zn Fe S Se lE mE nE 1f Total l m n Zn Fe S Se( ) ( )/ /

Where E Zn Fe S Se ,Total l m n( )/ E ,Zn EFe and ES Se/ are the energies of ZnFe2S/Se4, Zn, Fe, and S/Se, respectively.
The computed values are−3.4 eV for ZnFe2S4, and−3.1 eV for ZnFe2Se4which confirm that studiedmaterials
are thermodynamically favorable [52]. Furthermore, we have computed theCurie temperature by theClassical
Heisenbergmodel whosemathematical form is Tc=ΔE/3KB, whereΔE is the energy difference between
paramagnetic and ferromagnetic states, KB is Boltzmann constant [53]. The computed values are 315K, and 305
Kwhich show the room temperature ferromagnetism.

3.2. Electronic bandstructure
Band structure analysis is an important step in the understanding ofmaterial nature and its suitability for device
applications. Due to the ferromagnetic nature of thesematerials, we have calculated spin-up and spin-down
band structures presented infigures 3(a), (b). The valence bandmaxima (VBM) lie at theK-symmetry point
while conduction bandminima (CBM) atGammapoint in the up-spin channel of ZnFe2S4 shown infigure 3(a).
In addition, theVBM lies betweenGamma-Xpoints while CBM lies at Gammapoints in down-spin channels
showing a semiconductor nature. Similarly, the up spin and down spin channels are plotted for ZnFe2Se4
schemed infigure 3(b). In the up-spin channel, theVBMstays on theK-symmetry point crossing the Fermi level
andCBMstays onGamma-symmetry.Whereas, in the down spin channel both theVBMandCBM lie at
Gamma symmetry point having a narrow gap about Fermi level leading to semiconducting nature. Therefore, by

Figure 1. the crystal structure in atomic form and polyhedral formof cubic Spinels ZnFe2S/Se4.

Figure 2 . Optimized plots in FM (black color) andAFM (red color)states of (a)ZnFe2S4 and (b)ZnFe2Se4.
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combining both insulating and semiconducting behavior of up spin and down spin channels form
ferromagneticmaterials.

Materials withmaximum spin polarizability are desirable for spintronic applications. The spin polarizability
be calculated by the givenmathematical relation [54],

=
 - 
 + 

´P
N E N E

N E N E
100% 2F F

F F

( ) ( )
( ) ( )

( )

Where N ( ) and N ( ) stand for the total density of states (TDOS). To take a clearer picture of half-
metallicity and exchangemechanism in these thiospinels, we have plotted the total and partial density of states
(PDOS) infigures 4(a)–(b). The Fermi level is present in the valence band for the up spin channel, and in the
forbidden region for the down spin channel. The value of P is 100% for both compoundsmake thempromise for
spintronics. The distribution of valence and conduction states reveals that TDOS indicates half-metallic
behavior in these spinels-like band structures.

Figure 3 . band structures of (a)ZnFe2S4 and (b)ZnFe2Se4 in up spin (↑) and down spin (↓) channels.
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3.3.Magnetic properties
Magnetic properties ofmaterials are crucial for determining their suitability to spintronic applications. To
explainmagnetism inmaterials two potential exchanges, play a vital role, e.g double-exchange and super

Figure 4. (a)DOSof ZnFe2S4 in up spin (↑) and down spin (↓) channel. (b)DOSof ZnFe2Se4 in up spin (↑) and down spin (↓) channels.
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exchange [55]. Super-exchange is responsible for anti-ferromagnetismwhile the double exchange generates
ferromagnetism [56–58]. The FMnature of present thiospinels is confirmed through an optimization process.
This FMnature arises due to the double exchangemechanism in thesematerials, where transitionmetal’s d
orbital split into degenerate triplet t2g (dxy, dyz, dxz ) states and doublet states e.g. (dz

2 and dx
2
–dy

2 ). The 3d6 states of
Fe atom contribute sharp peaks in the up and down spin channel ranges from (1 to−6) eV showingmetallic
behavior in up spin channel.

The splitting of e.g. (Fe) and t2g (Fe) in the down spin channel cause a narrow bandgap which shows the
presence of semiconducting nature in spin-down configuration. The occurrence of e.g.(Fe) and 3d(Fe) states
at separate energies ensures themagnetic moment of electrons exist which causes ferromagnetic character.
From PDOS the 3d6, e.g., t2g states of Fe aremajorly responsible FMnature. In the individual PDOS of Zn,
the valence band of total (Zn) states possesses high peaks crossing Fermi level, which confirmmetallic
nature in the up-spin configuration, while in the downward configuration it shows semiconducting
behavior. However, the contribution of 4s2 (Zn) is minimum in both configurations. The total and partial
contribution of the S atom is displayed in figure 4, where 3p4 statemajorly presents high peaks in both
channels.

By replacing Swith Se, a similar pattern of results is obtained for ZnFe2Se4 through the density of states. The
TDOSholdsmetallic nature in themajority spin regionwhile a semiconducting nature in theminority spin
region due to hybridization among Fe, Zn, and Se. It is important to highlight the PDOS of ZnFe2Se4, which are
sketched for Fe, Zn, and Se individually infigure 4(b). Thefirst is one is for Fewhere the 3d6 state possesses high
peaks in the low range of energy states (lower than−1) and crossing the Fermi level with lower intensity in the
up-spin channel. It can be seen from figure 4 that narrow gap raised due to hybridization of doublet state of
e.g.(Fe) and triplet state of t2g(Fe) in bonding and in an anti-bonding state in spin-down configuration near the
EF, respectively. Further, Zn total and 3d

10 (Zn)major peaksfluctuated in the lower energy range in up and down
spin configuration. These peaks shifting beyond Fermi level with lower energy causesmetallic nature in up spin
configuration. The contribution due to 4s2(Zn) is lower near the Fermi level. Finally, the individual PDOS of Se
demonstrates the Total (Se), 4s2(Se), and 4p4(Se) states. Total (Se)plays an important role in anti-bonding states
in high energy states, while the 4s2(Se) state indicates a small contribution. The 4p4(Se) state is responsible for
major peaks in both channels withmetallic in up spin channel and semiconducting in a downward channel.
Overall, this half-metallic character is due to the separating of d states orbitals of Fe andZn in the existence of the
external force of four Se atoms. As Fe-d states split into e.g. (dz

2 and dx
2
−dy
2 ) states t2g (dxy, dyz, and dxz) states [58].

Thus, crystal field energyDCF arises from the splitting of e.g. states and t2g states and can be defined in terms of
the difference between the two states i.e., D = -E e tg g2( ) [59].

The behavior of ferromagnetism provokes by this crystal field energy and can be decreased byD dx( ) is
presented in table 1. The conditionwas evident for introducing ferromagnetism [60].

It is important to highlight the term exchange energyD pdx( ) among the d states of Fe/Zn and 4p state of Se.
The negative value confirms the occurrence of ferromagnetism. From table 1, it can be seen thatDCFdecreases
fromZnFe2S4 to ZnFe2Se4, which indicates that Se-based spinels aremore favorable for ferromagnetism. The
exchange constants aN0 and bN0 are calculated by [61].

a b=
D

=
D

N
E

xS
N

E

xS
, 3

c v

0 0 ( )

Where x and S stand for the concentration andmagneticmoment of Fe atom.WhileD = - E E Ec c cand
D = - E E Ev v v are the energies at VB andCB edges. In table 1. One can see the calculated values of aN0 and

bN .0 According to Zenger’s exchangemodel (extensively used theory of the ferromagnetism in ferromagnetic
semiconductors) [62, 63] the negative value of bN0 show themagnetic impurity through the energy gap in the
down spin channel with lower energy. The totalmagneticmoment of these compoundswas calculated to
analyze ferromagnetic strengthwhich arises due toMMof individual atoms and interstitial regions. From
table 2. It is obvious that Fe is themost contributor to the TMM in both spinels whileminor contribution comes
from the Zn and interstitial regions.

Table 1.The computed values of exchange energies (ΔEcrystal,Δx(d),Δx(pd), and
exchange constants (Noα andNoβ) for ZnFe2S/Se4.

Compounds (ΔEcrystal) Δx(d) Δx(pd) Noα Noβ

ZnFe2S4 −1.80 3.65 −0.027 −0.97 −0.34

ZnFe2Se4 −2.13 3.51 −0.046 −0.95 −0.37
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3.4. Thermoelectric properties
To overcome the global energy crises, the transformation of heat energy into useful electrical energy is an
effective way. Therefore, we investigated the thermoelectric behavior of spinels ZnFe2(S/Se)4 through BoltzTrap
code [49]. The thermoelectric parameters are plotted against temperature shown infigures 5(a)–(d). The plotted
electrical conductivity against temperature demonstrates a small variation in the range of 200K to 300K and
remains steady for high temperature in the case of both spinels. The thermal conductivity (k) ofmaterials is the
heatflow (q) due to the temperature gradient following the Fourier law = - q k T .x( )

Here, the computed thermal conductivity value increases linearly with the temperature range presented in
figure 5(b) for both ZnFe2S4 andZnFe2Se4 from ´ W mKs6.5 1014( )/ to ´ W mKs16 1014( )/ and

´ W mKs7.5 1014( )/ to 20´ W mKs10 ,14( )/ respectively. Further, the Seebeck coefficient S explains voltage due
to temperature gradient and can be calculated via the given equation.

p
p

=S
eh

K m T
n

8

3 3
4B2

2 2
1
2

*⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

Where e, h, K ,B m ,* T , and n are electronic charge, Planck constant, Boltzmann constant, effectivemass,
absolute temperature, and carrier concentration, respectively. Seebeck coefficient of ZnFe2(S/Se)4 are plotted in
figure 5(c). The computed value of S has the same value for both spinels up to 260K.Next, the values of ZnFe2S4
andZnFe2Se4 differed and reached at m V K7.2( )/ and m V K4.5( )/ at 500K, respectively. Furthermore, the
Power factor plays a key role in an understanding of thermoelectric performancewith amathematical expression
of s t=P S .2 / The calculated value of P for ZnFe2S4 started from W mK s0 2/ at 200K and obtained a

Figure 5.The computed (a)σ/τ, (b) κ/τ, (c) S, and (d)σS2/τ of ZnFe2S/Se4.

Table 2.Themagneticmoments for, Zn, Fe, S/Se. ZnFe2S4 andZnFe2Se4.

Total (μB) Int (μB) Cs (μB) Fe (μB) (S/SeμB)

ZnFe2S4 4.00 0.057 0.001 3.03 0.023

ZnFe2Se4 4.00 0.331 0.003 2.80 0.027
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maximumvalue of W mK s0.7 2/ at 500K. For ZnFe2Se4 the estimated values of P lies in range of
- W mK s0 0.35 2( ) / in thewhole temperature range. Hence, the figure ofmerit ZT is directly proportional to

the power factor. Thus,materials with high power factors are suitable for energy conversion devices. In our case,
ZnFe2S4 is a potential candidate for such an application.

4. Conclusion

In this research article, we have investigated structural, electronic,magnetic, and thermoelectric properties of
ZnFe2(S/Se)4 for spintronic and thermoelectric applications. The optimization of energy versus volume plots
reveals that these spinels are favorable for ferromagnetism. The electronic band structures were calculated in
terms of spin-up and downorientationwith a narrow bandgap. The half-metallicity was confirmed by TDOS
and PDOSwith one channel having 100% spin polarization. Themagneticmoment on nonmagnetic and
interstitial sites has been reported. The electrical conductivity has not shownmuch variationwith temperature.
However, thermal conductivity, Seebeck coefficient, and the power factor increasedwith increasing temperature
leading to high thermoelectric performance.
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