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Abstract

Half metallic ferromagnetism received remarkable attention due to its immense technological
applications in spintronic. In this perspective, thiospinels ZnFe,S/Se, is addressed by employing
density functional theory (DFT) for spintronics and thermoelectric devices. The optimized energy
versus volume leads to the confirmation of the Ferromagnetic (FM) states stability of both spinels. The
formation energy confirms the thermodynamic stability. TDOS and PDOS are determined to confirm
spin polarization and half-metallic ferromagnetism. Ferromagnetism is explored by exchange energies
and magnetic moments. In addition, thermoelectric characteristics are explored by electrical and
thermal conductivities, Seebeck coefficient, and power factor to evaluate their potential in thermo-
electric applications.

1. Introduction

Spintronic is an emerging field in the scientific research community and is defined as a novel type of electronics
that manipulates electrons by charge and spin of the electrons [1-3]. Its recent development begins since in 1988
with the invention of GMR. [4]. Half metal can be defined in terms of spin polarization (SP). Spin-polarized
leads to resolving the heat problems that occur in IC and various electronic devices. Materials with high spin
polarization, high magnetic phase transition (close to room temperature), and high magnetic moment are
required to utilize in spintronic technology. Materials which do not exhibit spin polarization are diamagnetic
because of unchanged DOS in both channels. However, asymmetric exist in ferromagnetic materials because of
the exchange mechanism which limits SP less than unity. On the other hand, half-metallic contains states at the
Fermi level in one channel and insulators in the second channel [5]. Thus, the materials persist 100%
polarization and are highly reccommended materials for spintronics. The discovery of half metals made a great
contribution to the field of spintronics due to their technological implications in efficient spintronic devices
including magnetic recording, electronic memory, and effective magnetic sensor [6-8].
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Opver the last few decades, researchers have been focused on many compounds, including (half, full and
quaternary) Heusler alloys [9, 10], dilute semiconductor [11], transition metal oxides [12], Spinels FeO, [13],
perovskites BaBkO; [14], double perovskites [15] and halide double perovskites [ 16]. Looking for half metal’s
materials with high Curie temperature at RT has been focused on for more than 15 years. A special class of
materials called spinels with cubic structures generalized by the formula AB,0O, with unique properties has
attracted more attention [17, 18]. To tune the physical properties of such complex crystals their present multiple
degrees of freedom. This class of materials has diverse properties including its potential application in
photocatalytic degradation [19-21], charge storing devices [22], thermoelectricity [23] energy conversion
applications [24]. Thiospinels have several desirable optical properties, including transparency across at large
photosensitivity [25], and nonlinear optical susceptibility [26] all of which make them capable candidates for
optoelectronic devices. Thiospinels (Zn/Hg) In,S, are used in terms of transport properties for energy
conversion devices [27]. Moreover, XIn,S,(X = Cd, Mg) has the potential ability for optoelectronic devices [28].

Ferromagnetism materials with semiconducting nature are the best option for spintronic applications. The
ferromagnetic spinel semiconductors AB,X, (A = Cu, Hg, Cd, B =Cr, and X = §, Se) are well-known magnetic
semiconductors, for instance, CuCr,Se, [29-31]. Further, the Curie temperature range 84 K-430 K, and
ferromagnetic semiconductor behavior make them appealing for spintronics [32]. Spinel ferromagnetic
materials play a key role regarding ferroelectric, memory, and spintronic applications [33, 34]. Owing to
Colossal Magnetoresistance in the transition metal ferro-spinel materials offers a fascinating platform for
researchers [35, 36]. The ferromagnetic characteristics of MgCr,S, and MgMn,S, are considered excellent FM
[37,38]. Q. Mahmood et al worked on ferromagnetism in MgCr,X,(X =S, Se) [39]. Recently, Mehmood et al
demonstrated the magnetic behavior of MgPr,(S/Se), for spintronic applications by DFT calculation [40].
Moreover, various properties of Spinels Ca(V/Mn),S, have been investigated computationally including
structural, magnetic, and thermoelectric [41].

The above vibrant review ensures that there is no literature available on Spinel’s ZnFe,S/Se, regarding their
half-metallic ferromagnetism and transport properties. In this article, we used TB-mB] to determine electronic
band structures, the partial and total density of states, and the half-metallic character of Zn-based thiospinels.
The ferromagnetism due to exchange mechanism and spin polarization without clustering effect is the primary
goal of our research. Thermoelectric parameters are investigated by employing BoltzTrap code. The study of the
effect of temperature, and thermal conductivity on the spin of electrons large effect the reliability of the devices.
Therefore, the effects of these parameters are also discussed in detail. The theoretical data presented in this work
can cover the lack of physical properties information on the ZnFe,S/Se, compounds.

2. Computational details

We employed the full-potential linearized augmented plane wave method FP-APW realized in the WIEN2K
package within the framework of DFT to calculate various properties including structural, electronic, magnetic,
and thermoelectric [42—44]. For reducing interatomic forces in electronic structures, optimization has been
done through PBEsol approximation. The structural characteristics are calculated by Perdew—Burke—Ernzerhof
PBEsol [45, 46] and modified Becke Johnson potential of Trans and Blaha (TB-mBJ) [47] because PBEsol was
analyzed the ground state properties more accurately but underestimate the electronic bandgap. Therefore, to
improve the bandgap accurately, the TB-mBJ potential has been implemented over the PBEsol approximation.
The solution of the electronic system inside the muffin-tin region is taken spherically harmonic. The k-mesh of
the order 12 x 12 x 12 has been selected as the point at which the energy is released by the system [48]. The
convergence parameters are adjusted as K, xRyt = 8.0, muffin radius (Ryr), and K, wave vector in the
reciprocal lattice, Gaussian factor G, = 18, and angular momentum #,,, = 10. The change was converged
up to 0.001m Ry. Furthermore, the TB-mB]J converged energy and the optimized electronic structures were used
to calculate the thermoelectric behavior through classical Boltzmann transport theory by using BoltzTraP
Package [49].

3. Result and discussion

3.1. Structural analysis
To optimize the cubic crystal structure of thiospinels ZnFe,(S/Se), with Fd-3m space group we have used
PBEsol approximation. The crystal structure of the Zn-based thiospinels is presented in figure 1. The relaxation
process is used for atomic positions with Zn (0.125, 0.125, and 0.125), Fe (0.5, 0.5, and 0.5) and O (0.25, 0.25, and
0.25) which are in accordance with the space group Fd-3m.

The optimized ZnFe,(S/Se), for FM and AFM states are presented in figure 2. The planned analogy of FM
and AFM revealed that ZnF,(S/Se), possess ferromagnetic nature owing to their lower energy. Similar results are
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Figure 1. the crystal structure in atomic form and polyhedral form of cubic Spinels ZnFe,S/Se,.
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Figure 2 . Optimized plots in FM (black color) and AFM (red color)states of (a) ZnFe,S, and (b) ZnFe,Se,.

evident from the literature of XCr,0,4 (X = Zn, Cd), and AV,0, (A = Zn, Cd, Hg) which ensure the lowest
energy in FM states confirm its stability. Therefore, the consistency of calculated results with the existing
literature is proof of the reliability of the study [50, 51].

The formation energy of studied compounds have been calculated by the relation

AHf = EToml(anFemS/Sen) — lEz, — mEp, — nES/Se (1)

Where Egoi(Zn;Fe,, S/ Sey), Ezns Epe and Eg s, are the energies of ZnFe,S/Sey, Zn, Fe, and S/ Se, respectively.
The computed values are —3.4 eV for ZnFe,S,, and —3.1 eV for ZnFe,Se, which confirm that studied materials
are thermodynamically favorable [52]. Furthermore, we have computed the Curie temperature by the Classical
Heisenberg model whose mathematical form is Tc = AE/3Kg, where AE is the energy difference between
paramagnetic and ferromagnetic states, Kg is Boltzmann constant [53]. The computed values are 315 K, and 305
K which show the room temperature ferromagnetism.

3.2. Electronic bandstructure

Band structure analysis is an important step in the understanding of material nature and its suitability for device
applications. Due to the ferromagnetic nature of these materials, we have calculated spin-up and spin-down
band structures presented in figures 3(a), (b). The valence band maxima (VBM) lie at the K-symmetry point
while conduction band minima (CBM) at Gamma point in the up-spin channel of ZnFe,S, shown in figure 3(a).
In addition, the VBM lies between Gamma-X points while CBM lies at Gamma points in down-spin channels
showing a semiconductor nature. Similarly, the up spin and down spin channels are plotted for ZnFe,Se,
schemed in figure 3(b). In the up-spin channel, the VBM stays on the K-symmetry point crossing the Fermi level
and CBM stays on Gamma-symmetry. Whereas, in the down spin channel both the VBM and CBM lie at
Gamma symmetry point having a narrow gap about Fermi level leading to semiconducting nature. Therefore, by
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Figure 3 . band structures of (a) ZnFe,S, and (b) ZnFe,Se4 in up spin (1) and down spin (] ) channels.

combining both insulating and semiconducting behavior of up spin and down spin channels form
ferromagnetic materials.

Materials with maximum spin polarizability are desirable for spintronic applications. The spin polarizability
be calculated by the given mathematical relation [54],

_ N(1)Er = NCl)Er

= x 100% (2)
N(T)Er+ N(|)Er

Where N ( T )and N ( | ) stand for the total density of states (TDOS). To take a clearer picture of half-
metallicity and exchange mechanism in these thiospinels, we have plotted the total and partial density of states
(PDOS) in figures 4(a)—(b). The Fermi level is present in the valence band for the up spin channel, and in the
forbidden region for the down spin channel. The value of P is 100% for both compounds make them promise for
spintronics. The distribution of valence and conduction states reveals that TDOS indicates half-metallic
behavior in these spinels-like band structures.
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3.3. Magnetic properties

Magnetic properties of materials are crucial for determining their suitability to spintronic applications. To
explain magnetism in materials two potential exchanges, play a vital role, e.g double-exchange and super
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Table 1. The computed values of exchange energies (AE rygta1, Ax(d), Ax(pd), and
exchange constants (N,«and N,0) for ZnFe,S/Se,.

Compounds (AEcrystal) Ax(d) Ax(pd) Nua Noﬁ
ZnFe,S, —1.80 3.65 —0.027 -0.97 —0.34
ZnFe,Se, —-2.13 3.51 —0.046 —0.95 —0.37

exchange [55]. Super-exchange is responsible for anti-ferromagnetism while the double exchange generates
ferromagnetism [56—58]. The FM nature of present thiospinels is confirmed through an optimization process.
This FM nature arises due to the double exchange mechanism in these materials, where transition metal’s d
orbital split into degenerate triplet t,4 (dyy, dy,, dy, ) states and doublet states e ,. (d?and df(—d§ ). The 3d° states of
Fe atom contribute sharp peaks in the up and down spin channel ranges from (1 to —6) eV showing metallic
behavior in up spin channel.

The splitting of e , (Fe) and t,4 (Fe) in the down spin channel cause a narrow bandgap which shows the
presence of semiconducting nature in spin-down configuration. The occurrence of e ; (Fe) and 3d(Fe) states
at separate energies ensures the magnetic moment of electrons exist which causes ferromagnetic character.
From PDOS the 3d°, € g, t2g states of Fe are majorly responsible FM nature. In the individual PDOS of Zn,
the valence band of total (Zn) states possesses high peaks crossing Fermi level, which confirm metallic
nature in the up-spin configuration, while in the downward configuration it shows semiconducting
behavior. However, the contribution of 4s* (Zn) is minimum in both configurations. The total and partial
contribution of the S atom is displayed in figure 4, where 3p* state majorly presents high peaks in both
channels.

By replacing S with Se, a similar pattern of results is obtained for ZnFe,Se, through the density of states. The
TDOS holds metallic nature in the majority spin region while a semiconducting nature in the minority spin
region due to hybridization among Fe, Zn, and Se. It is important to highlight the PDOS of ZnFe,Se,, which are
sketched for Fe, Zn, and Se individually in figure 4(b). The first is one is for Fe where the 3d° state possesses high
peaks in the low range of energy states (lower than —1) and crossing the Fermi level with lower intensity in the
up-spin channel. It can be seen from figure 4 that narrow gap raised due to hybridization of doublet state of
e ¢ (Fe) and triplet state of t;4(Fe) in bonding and in an anti-bonding state in spin-down configuration near the
Ep, respectively. Further, Zn total and 3d'° (Zn) major peaks fluctuated in the lower energy range in up and down
spin configuration. These peaks shifting beyond Fermi level with lower energy causes metallic nature in up spin
configuration. The contribution due to 4s*(Zn) is lower near the Fermi level. Finally, the individual PDOS of Se
demonstrates the Total (Se), 4s*(Se), and 4p4(Se) states. Total (Se) plays an important role in anti-bonding states
in high energy states, while the 45%(Se) state indicates a small contribution. The 4p4(Se) state is responsible for
major peaks in both channels with metallic in up spin channel and semiconducting in a downward channel.
Overall, this half-metallic character is due to the separating of d states orbitals of Fe and Zn in the existence of the
external force of four Se atoms. As Fe-d states splitintoe g (d?and didy) states t,4 (dyy, dy,, and dy,) states [58].
Thus, crystal field energy ACF arises from the splitting of e.g. states and t,, states and can be defined in terms of
the difference between the two states i.e., (AE = e; — 1) [59].

The behavior of ferromagnetism provokes by this crystal field energy and can be decreased by A, (d) is
presented in table 1. The condition was evident for introducing ferromagnetism [60].

Itis important to highlight the term exchange energy A, (pd) among the d states of Fe/Zn and 4p state of Se.
The negative value confirms the occurrence of ferromagnetism. From table 1, it can be seen that ACF decreases
from ZnFe,S, to ZnFe,Se,, which indicates that Se-based spinels are more favorable for ferromagnetism. The
exchange constants Ny« and Ny ( are calculated by [61].

AE*
Noao = —, Ny =
xS

=5 3

Where xand § stand for the concentration and magnetic moment of Fe atom. While AE¢ = E — Efand
AE" = E — E{ aretheenergies at VB and CB edges. In table 1. One can see the calculated values of Ny« and
Ny B. According to Zenger’s exchange model (extensively used theory of the ferromagnetism in ferromagnetic
semiconductors) [62, 63] the negative value of N, 3 show the magnetic impurity through the energy gap in the
down spin channel with lower energy. The total magnetic moment of these compounds was calculated to
analyze ferromagnetic strength which arises due to MM of individual atoms and interstitial regions. From
table 2. It is obvious that Fe is the most contributor to the TMM in both spinels while minor contribution comes
from the Zn and interstitial regions.
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Table 2. The magnetic moments for, Zn, Fe, S/Se. ZnFe,S, and ZnFe,Se,.

Total (1) Int (ug) Cs (118) Fe (118) (S/Seps)
ZnFe,S, 4.00 0.057 0.001 3.03 0.023
ZnFe,Se, 4.00 0.331 0.003 2.80 0.027

3.4. Thermoelectric properties

To overcome the global energy crises, the transformation of heat energy into useful electrical energy is an
effective way. Therefore, we investigated the thermoelectric behavior of spinels ZnFe,(S/Se), through BoltzTrap
code [49]. The thermoelectric parameters are plotted against temperature shown in figures 5(a)—(d). The plotted
electrical conductivity against temperature demonstrates a small variation in the range of 200 K to 300 K and
remains steady for high temperature in the case of both spinels. The thermal conductivity (k) of materials is the
heat flow (q) due to the temperature gradient following the Fourier law g = —kV,(T).
Here, the computed thermal conductivity value increases linearly with the temperature range presented in
figure 5(b) for both ZnFe,S, and ZnFe,Se, from 6.5 x 10'*(W /mKs)to16 x 10'*(W /mKs)and
7.5 x 10'(W /mKs) to 20 x 10'4(W /mKs), respectively. Further, the Seebeck coefficient S explains voltage due
to temperature gradient and can be calculated via the given equation.

1
S= (i)nngm*T(i)z
3eh? 3n

Where e, h, Kg, m™, T,and n_are electronic charge, Planck constant, Boltzmann constant, effective mass,

(C))

absolute temperature, and carrier concentration, respectively. Seebeck coefficient of ZnFe,(S/Se), are plotted in
figure 5(c). The computed value of S has the same value for both spinels up to 260 K. Next, the values of ZnFe,S,
and ZnFe,Se, differed and reached at 7.2(;1 V/K) and 4.5(u V /K) at 500 K, respectively. Furthermore, the
Power factor plays a key role in an understanding of thermoelectric performance with a mathematical expression
of P = S%c /7. The calculated value of P for ZnFe,S, started from 0 W /mK?s at 200 K and obtained a
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maximum value of 0.7W /mK s at 500 K. For ZnFe,Se, the estimated values of P lies in range of

(0 — 0.35) W /mK?s in the whole temperature range. Hence, the figure of merit ZT is directly proportional to
the power factor. Thus, materials with high power factors are suitable for energy conversion devices. In our case,
ZnFe,S, is a potential candidate for such an application.

4. Conclusion

In this research article, we have investigated structural, electronic, magnetic, and thermoelectric properties of
ZnFe,(S/Se), for spintronic and thermoelectric applications. The optimization of energy versus volume plots
reveals that these spinels are favorable for ferromagnetism. The electronic band structures were calculated in
terms of spin-up and down orientation with a narrow bandgap. The half-metallicity was confirmed by TDOS
and PDOS with one channel having 100% spin polarization. The magnetic moment on nonmagnetic and
interstitial sites has been reported. The electrical conductivity has not shown much variation with temperature.
However, thermal conductivity, Seebeck coefficient, and the power factor increased with increasing temperature
leading to high thermoelectric performance.
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