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The First Law

This chapter introduces some of the basic concepts of thermodynamics. It concentrates
on the conservation of energy—the experimental observation that energy can be neither
created nor destroyed—and shows how the principle of the conservation of energy can be
used to assess the energy changes that accompany physical and chemical processes.
Much of this chapter examines the means by which a system can exchange energy with its
surroundings in terms of the work it may do or have done on it or the heat that it may
produce or absorb. The target concept of the chapter is enthalpy, which is a very useful
bookkeeping property for keeping track of the heat output (or requirements) of physical
processes and chemical reactions at constant pressure. We also begin to unfold some of
the power of thermodynamics by showing how to establish relations between different
properties of a system. We shall see that one very useful aspect of thermodynamics is that
a property can be measured indirectly by measuring others and then combining their values.
The relations we derive also enable us to discuss the liquefaction of gases and to establish
the relation between the heat capacities of a substance under different conditions.

The release of energy can be used to provide heat when a fuel burns in a furnace, to
produce mechanical work when a fuel burns in an engine, and to generate electrical
work when a chemical reaction pumps electrons through a circuit. In chemistry, we
encounter reactions that can be harnessed to provide heat and work, reactions that
liberate energy that is released unused but which give products we require, and reac-
tions that constitute the processes of life. Thermodynamics, the study of the transfor-
mations of energy, enables us to discuss all these matters quantitatively and to make
useful predictions.

The basic concepts

For the purposes of thermodynamics, the universe is divided into two parts, the sys-
tem and its surroundings. The system is the part of the world in which we have a spe-
cial interest. It may be a reaction vessel, an engine, an electrochemical cell, a biological
cell, and so on. The surroundings comprise the region outside the system and are
where we make our measurements. The type of system depends on the characteristics
of the boundary that divides it from the surroundings (Fig. 2.1). If matter can be
transferred through the boundary between the system and its surroundings the sys-
tem is classified as open. If matter cannot pass through the boundary the system is
classified as closed. Both open and closed systems can exchange energy with their sur-
roundings. For example, a closed system can expand and thereby raise a weight in the
surroundings; a closed system may also transfer energy to the surroundings if they are



at a lower temperature. An isolated system is a closed system that has neither
mechanical nor thermal contact with its surroundings.

2.1 Work, heat, and energy

Key points (a) Work is done to achieve motion against an opposing force; energy is the capacity
to do work. (b) Heating is the transfer of energy that makes use of disorderly molecular motion;

work is the transfer of energy that makes use of organized motion.

Although thermodynamics deals with observations on bulk systems, it is immeasur-
ably enriched by understanding the molecular origins of these observations. In each
case we shall set out the bulk observations on which thermodynamics is based and
then describe their molecular interpretations.

(a) Operational definitions

The fundamental physical property in thermodynamics is work: work is done to
achieve motion against an opposing force. A simple example is the process of raising
a weight against the pull of gravity. A process does work if, in principle, it can be har-
nessed to raise a weight somewhere in the surroundings. An example of doing work is
the expansion of a gas that pushes out a piston: the motion of the piston can in prin-
ciple be used to raise a weight. A chemical reaction that drives an electric current
through a resistance also does work, because the same current could be passed
through a motor and used to raise a weight.

The energy of a system is its capacity to do work. When work is done on an other-
wise isolated system (for instance, by compressing a gas or winding a spring), the capa-
city of the system to do work is increased; in other words, the energy of the system
is increased. When the system does work (when the piston moves out or the spring
unwinds), the energy of the system is reduced and it can do less work than before.

Experiments have shown that the energy of a system may be changed by means
other than work itself. When the energy of a system changes as a result of a tempera-
ture difference between the system and its surroundings we say that energy has been
transferred as heat. When a heater is immersed in a beaker of water (the system), the
capacity of the system to do work increases because hot water can be used to do more
work than the same amount of cold water. Not all boundaries permit the transfer of
energy even though there is a temperature difference between the system and its sur-
roundings. Boundaries that do permit the transfer of energy as heat are called diather-
mic; those that do not are called adiabatic.

An exothermic process is a process that releases energy as heat into its surround-
ings. All combustion reactions are exothermic. An endothermic process is a process
in which energy is acquired from its surroundings as heat. An example of an endo-
thermic process is the vaporization of water. To avoid a lot of awkward language, we
say that in an exothermic process energy is transferred ‘as heat’ to the surroundings
and in an endothermic process energy is transferred ‘as heat” from the surroundings
into the system. However, it must never be forgotten that heat is a process (the trans-
fer of energy as a result of a temperature difference), not an entity. An endothermic
process in a diathermic container results in energy flowing into the system as heat
to restore the temperature to that of the surroundings. An exothermic process in a
similar diathermic container results in a release of energy as heat into the surround-
ings. When an endothermic process takes place in an adiabatic container, it results in
alowering of temperature of the system; an exothermic process results in a rise of tem-
perature. These features are summarized in Fig. 2.2.

2.1 WORK, HEAT, AND ENERGY

Matter
Open
Energy
(a)
Closed
(b)
Isolated
(c)

Fig.2.1 (a) An open system can exchange
matter and energy with its surroundings.
(b) A closed system can exchange energy
with its surroundings, but it cannot
exchange matter. (c) An isolated system
can exchange neither energy nor matter
with its surroundings.
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Endothermic Exothermic
process process

@ (b)
Endothermic Exothermic
process process

(c) (d)

Fig. 22 (a) When an endothermic process
occurs in an adiabatic system, the
temperature falls; (b) if the process is
exothermic, the temperature rises.

(c) When an endothermic process occurs
in a diathermic container, energy enters as
heat from the surroundings, and the system
remains at the same temperature. (d) If the
process is exothermic, energy leaves as heat,
and the process is isothermal.

2] 2]
o (o))
= =
el el
=, =,
=] =]
(o] (o]
= =
= =
= =
0 0

System

Fig. 2.3 When energy is transferred to the
surroundings as heat, the transfer
stimulates random motion of the atoms in
the surroundings. Transfer of energy from
the surroundings to the system makes use
of random motion (thermal motion) in the
surroundings.

Fig. 2.4 When a system does work,

it stimulates orderly motion in the
surroundings. For instance, the atoms
shown here may be part of a weight that is
being raised. The ordered motion of the
atoms in a falling weight does work on the
system.

(b) The molecular interpretation of heat and work

In molecular terms, heating is the transfer of energy that makes use of disorderly
molecular motion in the surroundings. The disorderly motion of molecules is called
thermal motion. The thermal motion of the molecules in the hot surroundings stimu-
lates the molecules in the cooler system to move more vigorously and, as a result, the
energy of the system is increased. When a system heats its surroundings, molecules
of the system stimulate the thermal motion of the molecules in the surroundings
(Fig. 2.3).

In contrast, work is the transfer of energy that makes use of organized motion in
the surroundings (Fig. 2.4). When a weight is raised or lowered, its atoms move in
an organized way (up or down). The atoms in a spring move in an orderly way when
it is wound; the electrons in an electric current move in an orderly direction. When
a system does work it causes atoms or electrons in its surroundings to move in an
organized way. Likewise, when work is done on a system, molecules in the surround-
ings are used to transfer energy to it in an organized way, as the atoms in a weight are
lowered or a current of electrons is passed.

The distinction between work and heat is made in the surroundings. The fact that a
falling weight may stimulate thermal motion in the system is irrelevant to the distinc-
tion between heat and work: work is identified as energy transfer making use of the
organized motion of atoms in the surroundings, and heat is identified as energy transfer
making use of thermal motion in the surroundings. In the adiabatic compression of a
gas, for instance, work is done on the system as the atoms of the compressing weight
descend in an orderly way, but the effect of the incoming piston is to accelerate the gas
molecules to higher average speeds. Because collisions between molecules quickly
randomize their directions, the orderly motion of the atoms of the weight is in effect
stimulating thermal motion in the gas. We observe the falling weight, the orderly
descent of its atoms, and report that work is being done even though it is stimulating
thermal motion.



2.2 The internal energy

Key points Internal energy, the total energy of a system, is a state function. (a) The equipartition
theorem can be used to estimate the contribution to the internal energy of classical modes of
motion. (b) The First Law states that the internal energy of an isolated system is constant.

In thermodynamics, the total energy of a system is called its internal energy, U. The
internal energy is the total kinetic and potential energy of the molecules in the system.
We denote by AU the change in internal energy when a system changes from an initial
state i with internal energy U, to a final state f of internal energy Uj:

AU=U,- U [2.1]

Throughout thermodynamics, we use the convention that AX = X;— X,, where X is a
property (a ‘state function’) of the system.

The internal energy is a state function in the sense that its value depends only on the
current state of the system and is independent of how that state has been prepared. In
other words, internal energy is a function of the properties that determine the current
state of the system. Changing any one of the state variables, such as the pressure,
results in a change in internal energy. That the internal energy is a state function has
consequences of the greatest importance, as we shall start to unfold in Section 2.10.

The internal energy is an extensive property of a system (Section F.3) and is mea-
sured in joules (1] =1 kg m? s™, Section F.4). The molar internal energy, U, is the
internal energy divided by the amount of substance in a system, U, = U/n; it is an
intensive property and commonly reported in kilojoules per mole (k] mol™).

(a) Molecular interpretation of internal energy

A molecule has a certain number of motional degrees of freedom, such as the ability
to translate (the motion of its centre of mass through space), rotate around its centre
of mass, or vibrate (as its bond lengths and angles change, leaving its centre of mass
unmoved). Many physical and chemical properties depend on the energy associated
with each of these modes of motion. For example, a chemical bond might break ifalot
of energy becomes concentrated in it, for instance as vigorous vibration.

The ‘equipartition theorem’ of classical mechanics was introduced in Section F.5.
According to it, the average energy of each quadratic contribution to the energy is
%kT. As we saw in Section F.5, the mean energy of the atoms free to move in three
dimensions is %kT and the total energy of a monatomic perfect gas is %NkT, or %nRT
(because N=nN, and R = N, k). We can therefore write

U, (T)=U,(0)+ %RT (monatomic gas; translation only) (2.2a)

where U_,(0) is the molar internal energy at T = 0, when all translational motion
has ceased and the sole contribution to the internal energy arises from the internal
structure of the atoms. This equation shows that the internal energy of a perfect
gas increases linearly with temperature. At 25°C, %RT= 3.7 k] mol™, so translational
motion contributes about 4 k] mol™" to the molar internal energy of a gaseous sample
of atoms or molecules.

When the gas consists of molecules, we need to take into account the effect of
rotation and vibration. A linear molecule, such as N, and CO,, can rotate around two
axes perpendicular to the line of the atoms (Fig. 2.5), so it has two rotational modes
of motion, each contributing a term %kT to the internal energy. Therefore, the mean
rotational energy is kT and the rotational contribution to the molar internal energy is
RT. By adding the translational and rotational contributions, we obtain
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A brief comment

The internal energy does not include the
kinetic energy arising from the motion of the
system as a whole, such as its kinetic energy
as it accompanies the Earth on its orbit
round the Sun. That is, the internal energy is
the energy ‘internal’ to the system.
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(a)

ety

+kT
+kT

(b)

Fig. 2.5 The rotational modes of molecules
and the corresponding average energies at a
temperature T. (a) A linear molecule can
rotate about two axes perpendicular to the
line of the atoms. (b) A nonlinear molecule
can rotate about three perpendicular axes.

U, (T)=U_(0)+ %RT (linear molecule; translation and rotation only)  (2.2b)

A nonlinear molecule, such as CH, or H,0O, can rotate around three axes and, again,
each mode of motion contributes a term %kT to the internal energy. Therefore, the
mean rotational energy is %kT and there is a rotational contribution of %RT to the
molar internal energy. That is,

U,(T)=U_(0)+3RT (nonlinear molecule; translation and rotation only) (2.2¢c)

The internal energy now increases twice as rapidly with temperature compared with
the monatomic gas. Put another way: for a gas consisting of 1 mol of nonlinear
molecules to undergo the same rise in temperature as 1 mol of monatomic gas, twice
as much energy must be supplied. Molecules do not vibrate significantly at room tem-
perature and, as a first approximation, the contribution of molecular vibrations to the
internal energy is negligible except for very large molecules such as polymers and bio-
logical macromolecules.

None of the expressions we have derived depends on the volume occupied by
the molecules: there are no intermolecular interactions in a perfect gas, so the distance
between the molecules has no effect on the energy. That is, the internal energy of a
perfect gas is independent of the volume it occupies. The internal energy of interacting
molecules in condensed phases also has a contribution from the potential energy of
their interaction. However, no simple expressions can be written down in general.
Nevertheless, the crucial molecular point is that, as the temperature of a system is
raised, the internal energy increases as the various modes of motion become more

highly excited.

(b) The formulation of the First Law

It has been found experimentally that the internal energy of a system may be changed
either by doing work on the system or by heating it. Whereas we may know how the
energy transfer has occurred (because we can see if a weight has been raised or lowered
in the surroundings, indicating transfer of energy by doing work, or if ice has melted
in the surroundings, indicating transfer of energy as heat), the system is blind to the
mode employed. Heat and work are equivalent ways of changing a system’s internal
energy. A system is like a bank: it accepts deposits in either currency, but stores its
reserves as internal energy. It is also found experimentally that, if a system is isolated
from its surroundings, then no change in internal energy takes place. This summary
of observations is now known as the First Law of thermodynamics and is expressed
as follows:

The internal energy of an isolated system is constant. First Law of thermodynamics

We cannot use a system to do work, leave it isolated, and then come back expecting
to find it restored to its original state with the same capacity for doing work. The
experimental evidence for this observation is that no ‘perpetual motion machine’,
a machine that does work without consuming fuel or using some other source of
energy, has ever been built.

These remarks may be summarized as follows. If we write w for the work done on
a system, ¢ for the energy transferred as heat to a system, and AU for the resulting
change in internal energy, then it follows that

Mathematical statement

AU=q+w of the First Law

(2.3)




Equation 2.3 summarizes the equivalence of heat and work and the fact that the inter-
nal energy is constant in an isolated system (for which g =0 and w=0). The equation
states that the change in internal energy of a closed system is equal to the energy that
passes through its boundary as heat or work. It employs the ‘acquisitive convention’,
in which w and q are positive if energy is transferred to the system as work or heat and
are negative if energy is lost from the system. In other words, we view the flow of
energy as work or heat from the system’s perspective.

® A brief illustration

If an electric motor produced 15 kJ of energy each second as mechanical work and lost
2 kJ as heat to the surroundings, then the change in the internal energy of the motor each
second is

AU=-2k]-15k]=-17Kk]

Suppose that, when a spring was wound, 100 J of work was done on it but 15 J escaped to
the surroundings as heat. The change in internal energy of the spring is

AU=100]-15]=+85] ®

2.3 Expansion work

Key points (a) Expansion work is proportional to the external pressure. (b) Free expansion
(against zero pressure) does no work. (c¢) The work of expansion against constant pressure is
proportional to that pressure and to the change in volume. (d) To achieve reversible expansion,
the external pressure is matched at every stage to the pressure of the system. (e) The work of

reversible, isothermal expansion of a perfect gas is a logarithmic function of the volume.

The way is opened to powerful methods of calculation by switching attention to
infinitesimal changes of state (such as infinitesimal change in temperature) and
infinitesimal changes in the internal energy dU. Then, if the work done on a system is
dw and the energy supplied to it as heat is dg, in place of eqn 2.3 we have

dU=dgq+dw (2.4)

To use this expression we must be able to relate dg and dw to events taking place in the
surroundings.

We begin by discussing expansion work, the work arising from a change in volume.
This type of work includes the work done by a gas as it expands and drives back the
atmosphere. Many chemical reactions result in the generation of gases (for instance,
the thermal decomposition of calcium carbonate or the combustion of octane), and
the thermodynamic characteristics of the reaction depend on the work that must be
done to make room for the gas it has produced. The term ‘expansion work’ also
includes work associated with negative changes of volume, that is, compression.

(@) The general expression for work

The calculation of expansion work starts from the definition used in physics, which
states that the work required to move an object a distance dz against an opposing force
of magnitude Fis

_ General definition

2.3 EXPANSION WORK
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A note on good practice Always
include the sign of AU (and of AX in
general), even if it is positive.




50 2 THE FIRST LAW

External
pressure, p,

Pressure, p
& N S

Fig. 26 When a piston of area A moves out
through a distance dz, it sweeps out a
volume dV' = Adz. The external pressure p_,
is equivalent to a weight pressing on the
piston, and the force opposing expansion is
F = peXA'

The negative sign tells us that, when the system moves an object against an opposing
force of magnitude F, and there are no other changes, then the internal energy of the
system doing the work will decrease. That is, if dz is positive (motion to positive z), dw
is negative, and the internal energy decreases (dU in eqn 2.4 is negative provided that
dg=0).

Now consider the arrangement shown in Fig. 2.6, in which one wall of a system is a
massless, frictionless, rigid, perfectly fitting piston of area A. If the external pressure is
Pep the magnitude of the force acting on the outer face of the piston is F=p, A. When
the system expands through a distance dz against an external pressure p,,, it follows
that the work done is dw=—p,, Adz. The quantity Adz is the change in volume, dV, in
the course of the expansion. Therefore, the work done when the system expands by
dV against a pressure p,, is

dw=—p,dV 26

To obtain the total work done when the volume changes from an initial value V; to a
final value V; we integrate this expression between the initial and final volumes:

Vf
W:_J PedV (2.6b)

V.

The force acting on the piston, p,, A, is equivalent to the force arising from a weight
that is raised as the system expands. If the system is compressed instead, then the same
weight is lowered in the surroundings and eqn 2.6 can still be used, but now V;< V;. It
is important to note that it is still the external pressure that determines the magnitude
of the work. This somewhat perplexing conclusion seems to be inconsistent with the
fact that the gas inside the container is opposing the compression. However, when
a gas is compressed, the ability of the surroundings to do work is diminished by
an amount determined by the weight that is lowered, and it is this energy that is
transferred into the system.

Other types of work (for example, electrical work), which we shall call either
non-expansion work or additional work, have analogous expressions, with each one
the product of an intensive factor (the pressure, for instance) and an extensive factor
(the change in volume). Some are collected in Table 2.1. For the present we continue
with the work associated with changing the volume, the expansion work, and see what
we can extract from eqn 2.6.

Table 2.1 Varieties of work*

Type of work dw Comments Unitst
Expansion —pdV Pey 1s the external pressure Pa
dV is the change in volume m?
Surface expansion ydo v is the surface tension Nm™
dois the change in area m?
Extension fdi fis the tension N
dlis the change in length m
Electrical ¢dQ ¢ is the electric potential A%
dQ s the change in charge C

*In general, the work done on a system can be expressed in the form dw = —Fdz, where Fis a ‘generalized force’
and dzis a ‘generalized displacement’.
T For work in joules (J). Note that INm=1Jand 1VC=1].



(b) Free expansion

Free expansion is expansion against zero opposing force. It occurs when p,, =0
According to eqn 2.6a, dw = 0 for each stage of the expansion. Hence, overall:

w=0 Work of free expansion ‘ (2.7)

That is, no work is done when a system expands freely. Expansion of this kind occurs
when a gas expands into a vacuum.

(c) Expansion against constant pressure

Now suppose that the external pressure is constant throughout the expansion. For
example, the piston may be pressed on by the atmosphere, which exerts the same
pressure throughout the expansion. A chemical example of this condition is the
expansion of a gas formed in a chemical reaction in a container that can expand. We
can evaluate eqn 2.6b by taking the constant p_, outside the integral:

Vf
W:_pexJ dv= _pex(vf - Vl)

V.

i

Therefore, if we write the change in volume as AV=V, -V,

Expansion work against (2.8)

w=—p AV
Pex constant external pressure

This result is illustrated graphically in Fig. 2.7, which makes use of the fact that an
integral can be interpreted as an area. The magnitude of w, denoted |w|, is equal to the
area beneath the horizontal line at p = p_, lying between the initial and final volumes.
A p,V-graph used to illustrate expansion work is called an indicator diagram; James
Watt first used one to indicate aspects of the operation of his steam engine.

(d) Reversible expansion

A reversible change in thermodynamics is a change that can be reversed by an
infinitesimal modification of a variable. The key word ‘infinitesimal’ sharpens the
everyday meaning of the word ‘reversible’ as something that can change direction.
One example of reversibility that we have encountered already is the thermal equilib-
rium of two systems with the same temperature. The transfer of energy as heat
between the two is reversible because, if the temperature of either system is lowered
infinitesimally, then energy flows into the system with the lower temperature. If the
temperature of either system at thermal equilibrium is raised infinitesimally, then
energy flows out of the hotter system. There is obviously a very close relationship
between reversibility and equilibrium: systems at equilibrium are poised to undergo
reversible change.

Suppose a gas is confined by a piston and that the external pressure, p,,, is set equal
to the pressure, p, of the confined gas. Such a system is in mechanical equilibrium with
its surroundings because an infinitesimal change in the external pressure in either
direction causes changes in volume in opposite directions. If the external pressure is
reduced infinitesimally, the gas expands slightly. If the external pressure is increased
infinitesimally, the gas contracts slightly. In either case the change is reversible in the
thermodynamic sense. If, on the other hand, the external pressure differs measurably
from the internal pressure, then changing p,, infinitesimally will not decrease it below
the pressure of the gas, so will not change the direction of the process. Such a system
is not in mechanical equilibrium with its surroundings and the expansion is thermo-
dynamically irreversible.
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Fig. 2.7 The work done by a gas when it
expands against a constant external
pressure, p,,, is equal to the shaded area in
this example of an indicator diagram.

The value of the integral

A brief comment b
j f(x)dxis

a
equal to the area under the graph of f(x)
between x=a and x = b. For instance, the
area under the curve f(x) = x* shown in the
illustration that lies between x=1and 3 is
3
J x2dx= (%x3 + constant) |?
1

(3F-1%)=2=867

1
3




52 2 THE FIRST LAW

To achieve reversible expansion we set p,, equal to p at each stage of the expansion.
In practice, this equalization could be achieved by gradually removing weights from
the piston so that the downward force due to the weights always matches the chang-
ing upward force due to the pressure of the gas. When we set p,, = p, eqn 2.6a becomes

dw=—-p dV=-pdV Reversible expansion work ‘ (2.9a)

rev

(Equations valid only for reversible processes are labelled with a subscript rev.)
Although the pressure inside the system appears in this expression for the work, it
does so only because p,, has been set equal to p to ensure reversibility. The total work
of reversible expansion from an initial volume V; to a final volume V/is therefore

Vi
w= —J pdV (2‘9b)rev

V.

i

We can evaluate the integral once we know how the pressure of the confined gas
depends on its volume. Equation 2.9 is the link with the material covered in Chapter 1
for, if we know the equation of state of the gas, then we can express p in terms of Vand
evaluate the integral.

(e) Isothermal reversible expansion

Consider the isothermal, reversible expansion of a perfect gas. The expansion is made
isothermal by keeping the system in thermal contact with its surroundings (which
may be a constant-temperature bath). Because the equation of state is pV = nRT, we
know that at each stage p = nRT/V, with V the volume at that stage of the expansion.
The temperature T is constant in an isothermal expansion, so (together with n and R)
it may be taken outside the integral. It follows that the work of reversible isothermal
expansion of a perfect gas from V, to V;at a temperature T'is

A brief comment Vi qv v - :
- __ Vi Reversible, isothermal expansion o
An integral that occurs throughout w= nRTJ =-nRTIn : work of a perfect gas (2.10)7,

. v, i
thermodynamics is i

When the final volume is greater than the initial volume, as in an expansion, the

J 1 dx=1Inx + constant, logarithm in eqn 2.10 is positive and hence w < 0. In this case, the system has done

X work on the surroundings and there is a corresponding reduction in its internal
by b energy. (Note the cautious language: we shall see later that there is a compensating

so J . dx= lng influx of energy as heat, so overall the internal energy is constant for the isothermal
a

expansion of a perfect gas.) The equations also show that more work is done for a
given change of volume when the temperature is increased: at a higher temperature
the greater pressure of the confined gas needs a higher opposing pressure to ensure
reversibility and the work done is correspondingly greater.

We can express the result of the calculation as an indicator diagram, for the magni-
tude of the work done is equal to the area under the isotherm p = nRT/V (Fig. 2.8).
Superimposed on the diagram is the rectangular area obtained for irreversible expan-
sion against constant external pressure fixed at the same final value as that reached in
the reversible expansion. More work is obtained when the expansion is reversible (the
area is greater) because matching the external pressure to the internal pressure at each
stage of the process ensures that none of the system’s pushing power is wasted. We
cannot obtain more work than for the reversible process because increasing the external
pressure even infinitesimally at any stage results in compression. We may infer from
this discussion that, because some pushing power is wasted when p> p.., the maximum
work available from a system operating between specified initial and final states and
passing along a specified path is obtained when the change takes place reversibly.



We have introduced the connection between reversibility and maximum work for
the special case of a perfect gas undergoing expansion. Later (in Section 3.5) we shall
see that it applies to all substances and to all kinds of work.

Example 2.1 Calculating the work of gas production

Calculate the work done when 50 g of iron reacts with hydrochloric acid to produce
FeCl,(aq) and hydrogen in (a) a closed vessel of fixed volume, (b) an open beaker
at 25°C.

Method We need to judge the magnitude of the volume change and then to decide
how the process occurs. If there is no change in volume, there is no expansion work
however the process takes place. If the system expands against a constant external
pressure, the work can be calculated from eqn 2.8. A general feature of processes in
which a condensed phase changes into a gas is that the volume of the former may
usually be neglected relative to that of the gas it forms.

Answer In (a) the volume cannot change, so no expansion work is done and w=0.
In (b) the gas drives back the atmosphere and therefore w = —p, AV. We can
neglect the initial volume because the final volume (after the production of gas)
is so much larger and AV = V- V; = V; = nRT/p,,, where n is the amount of H,
produced. Therefore,

RT
w=—p AV=—p, X B —_WRT
ex
Because the reaction is Fe(s) + 2 HCl(aq) — FeCl,(aq) + H,(g), we know that
1 mol H, is generated when 1 mol Fe is consumed, and # can be taken as the amount
of Fe atoms that react. Because the molar mass of Feis 55.85 g mol™, it follows that

o 08 (83145 K mol ) x (298 K)
55.85 g mol ™!

=-2.2Kk]

The system (the reaction mixture) does 2.2 kJ of work driving back the atmosphere.
Note that (for this perfect gas system) the magnitude of the external pressure does
not affect the final result: the lower the pressure, the larger the volume occupied by
the gas, so the effects cancel.

Self-test 2.1 Calculate the expansion work done when 50 g of water is electrolysed
under constant pressure at 25°C. [-10Kk]]

2.4 Heat transactions

Key points The energy transferred as heat at constant volume is equal to the change in internal
energy of the system. (a) Calorimetry is the measurement of heat transactions. (b) The heat capacity
at constant volume is the slope of the internal energy with respect to temperature.

In general, the change in internal energy of a system is
dU=dq+dw,, +dw, (2.11)

where dw, is work in addition (e for ‘extra’) to the expansion work, dw,,,. For

instance, dw, might be the electrical work of driving a current through a circuit. A
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P

p=nRT/V

o

Pressure, p

Fig. 2.8 The work done by a perfect gas
when it expands reversibly and
isothermally is equal to the area under the
isotherm p = nRT/V. The work done
during the irreversible expansion against
the same final pressure is equal to the
rectangular area shown slightly darker.
Note that the reversible work is greater
than the irreversible work.
interActivity Calculate the work of
e isothermal reversible expansion of
1.0 mol CO,(g) at 298 K from 1.0 m’ to
3.0 m® on the basis that it obeys the van
der Waals equation of state.
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Firing Thermometer

Oxygen
Ieads\

input
Bomb

Sample

Oxygen
under
pressure

Water

Fig. 2.9 A constant-volume bomb
calorimeter. The ‘bomb’ is the central
vessel, which is strong enough to withstand
high pressures. The calorimeter (for which
the heat capacity must be known) is the
entire assembly shown here. To ensure
adiabaticity, the calorimeter is immersed
in a water bath with a temperature
continuously readjusted to that of the
calorimeter at each stage of the
combustion.

A brief comment

Electrical charge is measured in coulombs, C.
The motion of charge gives rise to an electric
current, I, measured in coulombs per second,
or amperes, A, where 1A=1C shIfa
constant current I flows through a potential
difference A¢ (measured in volts, V), the
total energy supplied in an interval tis ItA¢.
Because 1AVs=1(Cs ) Vs=1CV=1]J,
the energy is obtained in joules with the
current in amperes, the potential difference
in volts, and the time in seconds.

system kept at constant volume can do no expansion work, so dw,,, = 0. If the system
is also incapable of doing any other kind of work (if it is not, for instance, an
electrochemical cell connected to an electric motor), then dw, = 0 too. Under these
circumstances:

Heat transferred at

constant volume (2.12a)

dU=dgq

We express this relation by writing dU = dq,,, where the subscript implies a change at
constant volume. For a measurable change,

AU=gq, (2.12b)

It follows that, by measuring the energy supplied to a constant-volume system as heat
(qy>0) or released from it as heat (g,,< 0) when it undergoes a change of state, we are
in fact measuring the change in its internal energy.

(a) Calorimetry

Calorimetry is the study of heat transfer during physical and chemical processes. A
calorimeter is a device for measuring energy transferred as heat. The most common
device for measuring AU is an adiabatic bomb calorimeter (Fig. 2.9). The process
we wish to study—which may be a chemical reaction—is initiated inside a constant-
volume container, the ‘bomb’. The bomb is immersed in a stirred water bath, and the
whole device is the calorimeter. The calorimeter is also immersed in an outer water
bath. The water in the calorimeter and of the outer bath are both monitored and
adjusted to the same temperature. This arrangement ensures that there is no net loss
of heat from the calorimeter to the surroundings (the bath) and hence that the
calorimeter is adiabatic.

The change in temperature, AT, of the calorimeter is proportional to the energy
that the reaction releases or absorbs as heat. Therefore, by measuring AT we can
determine q,, and hence find AU. The conversion of AT to gy, is best achieved by
calibrating the calorimeter using a process of known energy output and determining
the calorimeter constant, the constant C in the relation

q=CAT (2.13)

The calorimeter constant may be measured electrically by passing a constant current,
I, from a source of known potential difference, A@, through a heater for a known
period of time, ¢, for then

q=1ItA¢ (2.14)

® A brief illustration

If we pass a current of 10.0 A from a 12 V supply for 300 s, then from eqn 2.14 the energy
supplied as heat is

q=(10.0A)x (12 V) x (300 5) =3.6 X 10* AV s =36 K]

because 1 A V s = 1]. If the observed rise in temperature is 5.5 K, then the calorimeter
constant is C= (36 kJ)/(5.5K) =65k K., ®

Alternatively, C may be determined by burning a known mass of substance (benzoic
acid is often used) that has a known heat output. With C known, it is simple to inter-
pret an observed temperature rise as a release of heat.



(b) Heat capacity

The internal energy of a system increases when its temperature is raised. The increase
depends on the conditions under which the heating takes place and for the present we
suppose that the system has a constant volume. For example, it may be a gas in a con-
tainer of fixed volume. If the internal energy is plotted against temperature, then a
curve like that in Fig. 2.10 may be obtained. The slope of the tangent to the curve at
any temperature is called the heat capacity of the system at that temperature. The heat
capacity at constant volume is denoted C,, and is defined formally as

oU
C.,=|—
aa

In this case, the internal energy varies with the temperature and the volume of the
sample, but we are interested only in its variation with the temperature, the volume
being held constant (Fig. 2.11).

Definition of heat capacity

at constant volume 2.15]

® A brief illustration

The heat capacity of a monatomic perfect gas can be calculated by inserting the expres-
sion for the internal energy derived in Section 2.2a. There we saw that

Up=Uy(0) +3RT

so from eqn 2.15
d 3 3
CV,m = ﬁ(Um(O) + ERT) :ER
The numerical value is 12.47 JK™' mol™'. ®

Heat capacities are extensive properties: 100 g of water, for instance, has 100 times
the heat capacity of 1 g of water (and therefore requires 100 times the energy as heat
to bring about the same rise in temperature). The molar heat capacity at constant
volume, Cy, = C,/n, is the heat capacity per mole of substance, and is an intensive
property (all molar quantities are intensive). Typical values of Cy, , for polyatomic
gases are close to 25 ] K™! mol™'. For certain applications it is useful to know the
specific heat capacity (more informally, the ‘specific heat’) of a substance, which is
the heat capacity of the sample divided by the mass, usually in grams: C,, = C,,/m. The
specific heat capacity of water at room temperature is close to 4.2 J K™ g1, In general,
heat capacities depend on the temperature and decrease at low temperatures.
However, over small ranges of temperature at and above room temperature, the vari-
ation is quite small and for approximate calculations heat capacities can be treated as
almost independent of temperature.

The heat capacity is used to relate a change in internal energy to a change in tem-
perature of a constant-volume system. It follows from eqn 2.15 that

dU=C,dT (atconstant volume) (2.16a)

That is, at constant volume, an infinitesimal change in temperature brings about
an infinitesimal change in internal energy, and the constant of proportionality is C,,.
If the heat capacity is independent of temperature over the range of temperatures of
interest, a measurable change of temperature, AT, brings about a measurable increase
in internal energy, AU, where

AU=C,AT (at constant volume) (2.16b)
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Internal energy, U

Temperature, T

Fig.2.10 The internal energy of a system
increases as the temperature is raised; this
graph shows its variation as the system is
heated at constant volume. The slope of the
tangent to the curve at any temperature is
the heat capacity at constant volume at that
temperature. Note that, for the system
illustrated, the heat capacity is greater at B
than at A.

A brief comment

Partial derivatives are reviewed in
Mathematical background 2 following this
chapter.

Slope of U
Temperature verSl:s 7;6\‘;
variation constan

of U

Internal energy, U

Temperature, T

Fig.2.11 The internal energy of a system
varies with volume and temperature,
perhaps as shown here by the surface.

The variation of the internal energy with
temperature at one particular constant
volume is illustrated by the curve drawn
parallel to T. The slope of this curve at any
point is the partial derivative (dU/9T)y,.
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Energy
as work

Energy AU<q

as heat l

B a

Fig. 212 When a system is subjected to
constant pressure and is free to change
its volume, some of the energy supplied
as heat may escape back into the
surroundings as work. In such a case, the
change in internal energy is smaller than
the energy supplied as heat.

Because a change in internal energy can be identified with the heat supplied at con-
stant volume (eqn 2.12b), the last equation can also be written

qy=C, AT (2.17)

This relation provides a simple way of measuring the heat capacity of a sample: a mea-
sured quantity of energy is transferred as heat to the sample (electrically, for example),
and the resulting increase in temperature is monitored. The ratio of the energy trans-
ferred as heat to the temperature rise it causes (q,,/AT) is the constant-volume heat
capacity of the sample.

A large heat capacity implies that, for a given quantity of energy transferred as heat,
there will be only a small increase in temperature (the sample has a large capacity for
heat). An infinite heat capacity implies that there will be no increase in temperature
however much energy is supplied as heat. At a phase transition, such as at the boiling
point of water, the temperature of a substance does not rise as energy is supplied as
heat: the energy is used to drive the endothermic transition, in this case to vaporize the
water, rather than to increase its temperature. Therefore, at the temperature of
a phase transition, the heat capacity of a sample is infinite. The properties of heat
capacities close to phase transitions are treated more fully in Section 4.6.

2.5 Enthalpy

Key points (a) Energy transferred as heat at constant pressure is equal to the change in enthalpy
of a system. (b) Enthalpy changes are measured in a constant-pressure calorimeter. (c) The heat
capacity at constant pressure is equal to the slope of enthalpy with temperature.

The change in internal energy is not equal to the energy transferred as heat when the
system is free to change its volume. Under these circumstances some of the energy
supplied as heat to the system is returned to the surroundings as expansion work
(Fig. 2.12), so dU is less than dq. However, we shall now show that in this case the
energy supplied as heat at constant pressure is equal to the change in another thermo-
dynamic property of the system, the enthalpy.

(a) The definition of enthalpy
The enthalpy, H, is defined as

H=U+pV Definition of enthalpy | [2.18]

where p is the pressure of the system and V is its volume. Because U, p, and V are all
state functions, the enthalpy is a state function too. As is true of any state function, the
change in enthalpy, A H, between any pair of initial and final states is independent of
the path between them.

Although the definition of enthalpy may appear arbitrary, it has important impli-
cations for thermochemisty. For instance, we show in the following Justification that
eqn 2.18 implies that the change in enthalpy is equal to the energy supplied as heat at
constant pressure (provided the system does no additional work):

dH=dgq Heat transferred at (2.192)
constant pressure

For a measurable change

AH=q, (2.19b)



Justification 2.1 The relation AH=q,

For a general infinitesimal change in the state of the system, U changes to U + dU,
p changes to p + dp, and V changes to V + dV, so from the definition in eqn 2.18,
H changes from U+ pV to

H+dH=(U+dU)+ (p+dp)(V+dV)
=U+dU+pV+pdV+ Vdp+dpdV

The last term is the product of two infinitesimally small quantities and can therefore
be neglected. As a result, after recognizing U + pV = H on the right, we find that H
changes to

H+dH=H+dU+pdV+ Vdp

and hence that
dH=dU+ pdV+ Vdp

If we now substitute dU = dq + dw into this expression, we get
dH=dq+dw+pdV+ Vdp

If the system is in mechanical equilibrium with its surroundings at a pressure p and
does only expansion work, we can write dw =—pdV and obtain

dH =dq+ Vdp

Now we impose the condition that the heating occurs at constant pressure by
writing dp = 0. Then

dH=dgq (at constant pressure, no additional work)

asineqn 2.19a.

The result expressed in eqn 2.19 states that, when a system is subjected to constant
pressure and only expansion work can occur, the change in enthalpy is equal to the
energy supplied as heat. For example, if we supply 36 k] of energy through an electric
heater immersed in an open beaker of water, then the enthalpy of the water increases
by 36 kJ and we write AH =+36 k]J.

(b) The measurement of an enthalpy change

An enthalpy change can be measured calorimetrically by monitoring the temperature
change that accompanies a physical or chemical change occurring at constant pres-
sure. A calorimeter for studying processes at constant pressure is called an isobaric
calorimeter. A simple example is a thermally insulated vessel open to the atmosphere:
the heat released in the reaction is monitored by measuring the change in temperature
of the contents. For a combustion reaction an adiabatic flame calorimeter may be
used to measure AT when a given amount of substance burns in a supply of oxygen
(Fig. 2.13). Another route to AH is to measure the internal energy change by using a
bomb calorimeter, and then to convert AU to AH. Because solids and liquids have
small molar volumes, for them pV, is so small that the molar enthalpy and molar
internal energy are almost identical (H,, = U, + pV,, = U_,). Consequently, if a pro-
cess involves only solids or liquids, the values of AH and AU are almost identical.
Physically, such processes are accompanied by a very small change in volume; the
system does negligible work on the surroundings when the process occurs, so the
energy supplied as heat stays entirely within the system. The most sophisticated way
to measure enthalpy changes, however, is to use a differential scanning calorimeter
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Gas, Oxygen

vapour Products

Fig. 2.13 A constant-pressure flame
calorimeter consists of this component
immersed in a stirred water bath.
Combustion occurs as a known amount of
reactant is passed through to fuel the flame,
and the rise of temperature is monitored.
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(DSC). Changes in enthalpy and internal energy may also be measured by noncalori-
metric methods (see Chapter 6).

Example 2.2 Relating AH and AU

The change in molar internal energy when CaCOj,(s) as calcite converts to another
form, aragonite, is +0.21 kJ mol™!. Calculate the difference between the molar
enthalpy and internal energy changes when the pressure is 1.0 bar given that the
densities of the polymorphs are 2.71 g cm™ and 2.93 g cm™, respectively.

Method The starting point for the calculation is the relation between the enthalpy
of a substance and its internal energy (eqn 2.18). The difference between the two
quantities can be expressed in terms of the pressure and the difference of their
molar volumes, and the latter can be calculated from their molar masses, M, and
their mass densities, p, by using p=M/V__.

Answer The change in enthalpy when the transition occurs is
AH_, = H, (aragonite) — H, (calcite)

={Un(@) +pVi, (@)} = {U () + Vi (0)}
=AU, +p{V,,(a) - V, ()}

where a denotes aragonite and c calcite. It follows by substituting V, = M/p that

AHm_AUﬂM[L_Lj
p@@)  plo)

Substitution of the data, using M = 100 g mol™!, gives

1 1
AH, — AU, =(1.0x10° Pa) X (100 g mol™") x -
293gcm™ 2.71gcm™

=-2.8%10° Pa cm® mol™! =—0.28 Pa m> mol™!

Hence (because ] Pam’>=1]), AH_ —AU_,=-0.28] mol™!, which is only 0.1 per
cent of the value of AU . We see that it is usually justifiable to ignore the difference
between the molar enthalpy and internal energy of condensed phases, except at
very high pressures, when pAV_ is no longer negligible.

Self-test 2.2 Calculate the difference between AH and AU when 1.0 mol Sn(s, grey)
of density 5.75 g cm™ changes to Sn(s, white) of density 7.31 g cm™ at 10.0 bar. At
298 K, AH=+2.1K]. [AH-AU=-4.417]

The enthalpy of a perfect gas is related to its internal energy by using pV = #nRT in
the definition of H:

H=U+pV=U+nRT (2.20)°

This relation implies that the change of enthalpy in a reaction that produces or con-
sumes gas is

AH=AU+An,RT (2.21)°

where An, is the change in the amount of gas molecules in the reaction.



® A brief illustration

In the reaction 2 H,(g) + O,(g) — 2 H,0(1), 3 mol of gas-phase molecules is replaced by
2 mol of liquid-phase molecules, so Ang =-3 mol. Therefore, at 298 K, when RT=2.48 kJ
mol ™., the enthalpy and internal energy changes taking place in the system are related by

AH,,— AU, = (-3 mol) X RT =—7.4 k] mol™

Note that the difference is expressed in kilojoules, not joules as in Example 2.2. The
enthalpy change is smaller (in this case, less negative) than the change in internal energy
because, although heat escapes from the system when the reaction occurs, the system
contracts when the liquid is formed, so energy is restored to it from the surroundings. ®

Example 2.3 Calculating a change in enthalpy

Water is heated to boiling under a pressure of 1.0 atm. When an electric current
of 0.50 A from a 12 V supply is passed for 300 s through a resistance in thermal
contact with it, it is found that 0.798 g of water is vaporized. Calculate the molar
internal energy and enthalpy changes at the boiling point (373.15 K).

Method Because the vaporization occurs at constant pressure, the enthalpy change
is equal to the heat supplied by the heater. Therefore, the strategy is to calculate the
energy supplied as heat (from g = ItA@), express that as an enthalpy change, and
then convert the result to a molar enthalpy change by division by the amount of
H,O molecules vaporized. To convert from enthalpy change to internal energy
change, we assume that the vapour is a perfect gas and use eqn 2.21.

Answer The enthalpy change is
AH=gq,=(0.50A) x (12 V) X (300'5) = 0.50 X 12 X 300 ]

Here we have used 1 AV s=1]. Because 0.798 g of water is (0.798 g)/(18.02 g mol ™)
=(0.798/18.02) mol H,O, the enthalpy of vaporization per mole of H,O is
0.50x12x300]

AH_ =+ =+41 kJ mol™!
(0.798/18.02) mol

In the process H,0(l) — H,0(g) the change in the amount of gas molecules is
Ang =+1 mol, so

AU, =AH, — RT=+38 k] mol™

Notice that the internal energy change is smaller than the enthalpy change because
energy has been used to drive back the surrounding atmosphere to make room for
the vapour.

Self-test 2.3 The molar enthalpy of vaporization of benzene at its boiling point
(353.25 K) is 30.8 k] mol™'. What is the molar internal energy change? For how
long would the same 12 V source need to supply a 0.50 A current in order to
vaporize a 10 g sample? [+27.9 k] mol ™}, 6.6 X 10% 5]

(c) The variation of enthalpy with temperature

The enthalpy of a substance increases as its temperature is raised. The relation
between the increase in enthalpy and the increase in temperature depends on the con-
ditions (for example, constant pressure or constant volume). The most important
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Enthalpy, H

V\Internal
energy, U

Temperature, T

Fig. 2.14 The constant-pressure heat
capacity at a particular temperature is the
slope of the tangent to a curve of the
enthalpy of a system plotted against
temperature (at constant pressure). For
gases, at a given temperature the slope of
enthalpy versus temperature is steeper than
that of internal energy versus temperature,
and C, . is larger than Cy, ..

condition is constant pressure, and the slope of the tangent to a plot of enthalpy
against temperature at constant pressure is called the heat capacity at constant pres-
sure, C,, at a given temperature (Fig. 2.14). More formally:

» [2.22]

ot at constant pressure

C = [BH J Definition of heat capacity
P

The heat capacity at constant pressure is the analogue of the heat capacity at constant
volume and is an extensive property. The molar heat capacity at constant pressure,
Cp,m> 18 the heat capacity per mole of material; it is an intensive property.

The heat capacity at constant pressure is used to relate the change in enthalpy to a

change in temperature. For infinitesimal changes of temperature
dH= deT (at constant pressure) (2.23a)

If the heat capacity is constant over the range of temperatures of interest, then for a
measurable increase in temperature

AH= CPAT (at constant pressure) (2.23b)

Because an increase in enthalpy can be equated with the energy supplied as heat at
constant pressure, the practical form of the latter equation is

g,=C,AT (2.24)

This expression shows us how to measure the heat capacity of a sample: a measured
quantity of energy is supplied as heat under conditions of constant pressure (as in a
sample exposed to the atmosphere and free to expand) and the temperature rise is
monitored.

The variation of heat capacity with temperature can sometimes be ignored if the
temperature range is small; this approximation is highly accurate for a monatomic
perfect gas (for instance, one of the noble gases at low pressure). However, when it is
necessary to take the variation into account, a convenient approximate empirical ex-
pression is

c
Cp,m:a+bT+F (2.25)

The empirical parameters a, b, and ¢ are independent of temperature (Table 2.2) and
are found by fitting this expression to experimental data.

Table 2.2* Temperature variation of molar heat capacities, C, ,,/(J K'mol™)=a+bT+c/T?

a b/(1073 K) ¢/(10° K?)
C(s, graphite) 16.86 4.77 —8.54
CO,(g) 44.22 8.79 —8.62
H,0(]) 75.29 0 0
N,(g) 28.58 3.77 —0.50

* More values are given in the Data section.



Example 2.4 Evaluating an increase in enthalpy with temperature

What is the change in molar enthalpy of N, when it is heated from 25°C to 100°C?
Use the heat capacity information in Table 2.2.

Method The heat capacity of N, changes with temperature, so we cannot use
eqn 2.23b (which assumes that the heat capacity of the substance is constant).
Therefore, we must use eqn 2.23a, substitute eqn 2.25 for the temperature depend-
ence of the heat capacity, and integrate the resulting expression from 25°C to
100°C.

Answer For convenience, we denote the two temperatures T, (298 K) and T,
(373 K). The relation we require is

H(T,) T, c
J dH:J (a+bT+—2]dT
H(T)) T T

1

and the relevant integrals are

2

15 dx 1
dx = x+ constant xdx=3x"+ constant —— =——+ constant
x x

It follows that

11
H(T,) - H(T)) =a(T,- T,) +3b(T3 - T?}) —C(F—?j

2 1
Substitution of the numerical data results in
H(373 K) = H(298 K) +2.20 k] mol™

If we had assumed a constant heat capacity of 29.14 ] K™! mol™ (the value given
by eqn 2.25 at 25°C), we would have found that the two enthalpies differed by
2.19 kJ mol ™.

Self-test 2.4 Atvery low temperatures the heat capacity of a solid is proportional to
T3, and we can write C,= aT?. What is the change in enthalpy of such a substance
when it is heated from 0 to a temperature T (with T close to 0)? [AH= iaT‘l]

Most systems expand when heated at constant pressure. Such systems do work on
the surroundings and therefore some of the energy supplied to them as heat escapes
back to the surroundings. As a result, the temperature of the system rises less than
when the heating occurs at constant volume. A smaller increase in temperature
implies a larger heat capacity, so we conclude that in most cases the heat capacity at
constant pressure of a system is larger than its heat capacity at constant volume. We
show later (Section 2.11) that there is a simple relation between the two heat capa-

cities of a perfect gas:

Relation between heat

C,—Cy=nR capacities of a perfect gas

It follows that the molar heat capacity of a perfect gas is about 8 ] K™! mol™! larger
at constant pressure than at constant volume. Because the heat capacity at constant
volume of a monatomic gas is about 12 ] K! mol ™, the difference is highly significant

and must be taken into account.

(2.26)°
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Thermocouples

Sample Reference

Heaters

Fig.2.15 A differential scanning
calorimeter. The sample and a reference
material are heated in separate but identical
metal heat sinks. The output is the
difference in power needed to maintain the
heat sinks at equal temperatures as the
temperature rises.
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Fig.2.16 A thermogram for the protein
ubiquitin at pH = 2.45. The protein retains
its native structure up to about 45°C and
then undergoes an endothermic
conformational change. (Adapted from

B. Chowdhry and S. LeHarne, J. Chem.
Educ. 74, 236 (1997).)

IMPACT ON BIOCHEMISTRY AND MATERIALS SCIENCE
12.1 Differential scanning calorimetry

A differential scanning calorimeter (DSC) measures the energy transferred as heat to or
from a sample at constant pressure during a physical or chemical change. The term
‘differential’ refers to the fact that the behaviour of the sample is compared to that of
a reference material that does not undergo a physical or chemical change during the
analysis. The term ‘scanning’ refers to the fact that the temperatures of the sample and
reference material are increased, or scanned, during the analysis.

A DSC consists of two small compartments that are heated electrically at a constant
rate. The temperature, T, at time t during a linear scan is T'= T, + «t, where T}, is the
initial temperature and & is the temperature scan rate. A computer controls the elec-
trical power supply that maintains the same temperature in the sample and reference
compartments throughout the analysis (Fig. 2.15).

If no physical or chemical change occurs in the sample at temperature T, we write the
heat transferred to the sample as q,= CPAT, where AT = T — T, and we have assumed
that C, is independent of temperature. Because T = T + a, AT = at. The chemical
or physical process requires the transfer of q, + q,,.,, where g, ., is the excess energy
transferred as heat needed to attain the same change in temperature of the sample as
the control. The quantity g, ., is interpreted in terms of an apparent change in the heat
capacity at constant pressure of the sample, C,, during the temperature scan:

_ qp,ex _ qp,ex _ Pex

PETAT T ot o«

where P, =g, ., /tis the excess electrical power necessary to equalize the temperature
of the sample and reference compartments. A DSC trace, also called a thermogram,
consists of a plot of C, . against T (Fig. 2.16). From eqn 2.23a, the enthalpy change
associated with the process is

TZ
AH= J CpexdT

T,

where T, and T, are, respectively, the temperatures at which the process begins and
ends. This relation shows that the enthalpy change is equal to the area under the plot
of C, . against T.

With a DSC, enthalpy changes may be determined in samples of masses as low
as 0.5 mg, which is a significant advantage over conventional calorimeters, which
require several grams of material. The technique is used in the chemical industry to
characterize polymers in terms of their structural integrity, stability, and nanoscale
organization. For example, it is possible to detect the ability of certain polymers such
as ethylene oxide (EO) and propylene oxide (PO) to self-aggregate as their tempera-
ture is raised. These copolymers are widely used as surfactants and detergents with the
amphiphilic (both water- and hydrocarbon-attracting) character provided by the
hydrophobic central PO block and the more hydrophilic EO blocks attached on either
side. They aggregate to form micelles (clusters) as the temperature is raised because
the more hydrophobic central PO block becomes less soluble at higher temperature
but the terminal EO blocks retain their strong interaction with water. This enhanced
amphiphilic character of the molecules at higher temperature drives the copolymers
to form micelles that are spherical in shape. The micellization process is strongly
endothermic, reflecting the initial destruction of the hydrogen bonds of the PO block
with water, and is readily detected by DSC. Further increases in temperature affect the
shape of the micelle, changing from spherical to rod-like. A new but weaker DSC



signal at higher temperature reflects a small change in enthalpy as micelles aggregate
to form the rod-like structure. The marked decrease in the heat capacity accompany-
ing the sphere-to-rod transition presumably reflects an extensive decrease in the
degree of hydration of the polymer.

The technique is also used to assess the stability of proteins, nucleic acids, and
membranes. For example, the thermogram shown in Fig. 2.16 indicates that the
protein ubiquitin undergoes an endothermic conformational change in which a large
number of non-covalent interactions (such as hydrogen bonds) are broken simultan-
eously and result in denaturation, the loss of the protein’s three-dimensional struc-
ture. The area under the curve represents the heat absorbed in this process and can be
identified with the enthalpy change. The thermogram also reveals the formation of
new intermolecular interactions in the denatured form. The increase in heat capacity
accompanying the native — denatured transition reflects the change from a more
compact native conformation to one in which the more exposed amino acid side
chains in the denatured form have more extensive interactions with the surrounding
water molecules.

2.6 Adiabatic changes

Key point For the reversible adiabatic expansion of a perfect gas, pressure and volume are related

by an expression that depends on the ratio of heat capacities.

We are now equipped to deal with the changes that occur when a perfect gas expands
adiabatically. A decrease in temperature should be expected: because work is done but
no heat enters the system, the internal energy falls, and therefore the temperature of
the working gas also falls. In molecular terms, the kinetic energy of the molecules falls
as work is done, so their average speed decreases, and hence the temperature falls.
The change in internal energy of a perfect gas when the temperature is changed
from T, to Tyand the volume is changed from V; to V; can be expressed as the sum of
two steps (Fig. 2.17). In the first step, only the volume changes and the temperature is
held constant at its initial value. However, because the internal energy of a perfect gas
is independent of the volume the molecules occupy, the overall change in internal
energy arises solely from the second step, the change in temperature at constant
volume. Provided the heat capacity is independent of temperature, this change is

AU=C,(T;—T;) = C, AT

Because the expansion is adiabatic, we know that g = 0; because AU = g + w, it then
follows that AU = w,,. The subscript ‘ad’ denotes an adiabatic process. Therefore, by
equating the two expressions we have obtained for AU, we obtain

W, = CyAT (2.27)

That is, the work done during an adiabatic expansion of a perfect gas is proportional
to the temperature difference between the initial and final states. That is exactly what
we expect on molecular grounds, because the mean kinetic energy is proportional to
T, so a change in internal energy arising from temperature alone is also expected to be
proportional to AT. In Further information 2.1 we show that the initial and final tem-
peratures of a perfect gas that undergoes reversible adiabatic expansion (reversible
expansion in a thermally insulated container) can be calculated from

1/c
V.
Vf

(2.28a)2

rev
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Fig.2.17 To achieve a change of state from
one temperature and volume to another
temperature and volume, we may consider
the overall change as composed of two
steps. In the first step, the system expands
at constant temperature; there is no change
in internal energy if the system consists
of a perfect gas. In the second step, the
temperature of the system is reduced at
constant volume. The overall change in
internal energy is the sum of the changes
for the two steps.
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Isotherm,
po1/V

Adiabat,
p o< 1/vr

Pressure, p

Pressure, p

Fig.2.18 An adiabat depicts the variation of
pressure with volume when a gas expands
adiabatically. Note that the pressure
declines more steeply for an adiabat than
it does for an isotherm because the
temperature decreases in the former.

interActivity Explore how the

parameter ¥ affects the dependence
of the pressure on the volume. Does the
pressure—volume dependence become
stronger or weaker with increasing volume?

where c= C,,  /R. By raising each side of this expression to the power ¢, an equivalent
expression is

V. T{=V;Tg (2.28b)2.,

This result is often summarized in the form VT = constant.

® A brief illustration

Consider the adiabatic, reversible expansion of 0.020 mol Ar, initially at 25°C, from
0.50 dm® to 1.00 dm’. The molar heat capacity of argon at constant volume is
12.48 ] K™ mol™, so ¢ =1.501. Therefore, from eqn 2.28a,

0.50 dm3 )15
T;= (298 K) X | ——— =188 K
1.00 dm?

It follows that AT =—-110 K and, therefore, from eqn 2.27, that
w={(0.020 mol) x (12.48 J K~ mol™))} x (<110 K) =27 ]

Note that temperature change is independent of the amount of gas but the work is not. ®

Self-test 2.5 Calculate the final temperature, the work done, and the change of

internal energy when ammonia is used in a reversible adiabatic expansion from

0.50 dm® to 2.00 dm?, the other initial conditions being the same.
[195K,-56],—56]]

We also show in Further information 2.1 that the pressure of a perfect gas that
undergoes reversible adiabatic expansion from a volume V; to a volume V/ is related
to its initial pressure by

Reversible adiabatic
y: . '}’ °
p fo Vi expansion of a perfect gas (2.29)rev

where y=C, ,/Cy,.. This result is commonly summarized in the form pV?= constant.
For a monatomic perfect gas (Section 2.2a), and from eqn 2.26 C, ., = %R, SO Y= %
For a gas of nonlinear polyatomic molecules (which can rotate as well as translate),
Cym=3R,s0 7= %. The curves of pressure versus volume for adiabatic change are
known as adiabats, and one for a reversible path is illustrated in Fig. 2.18. Because
¥ > 1, an adiabat falls more steeply (p < 1/V7¥) than the corresponding isotherm
(p o< 1/V'). The physical reason for the difference is that, in an isothermal expansion,
energy flows into the system as heat and maintains the temperature; as a result, the
pressure does not fall as much as in an adiabatic expansion.

® A brief illustration

When a sample of argon (for which y= %) at 100 kPa expands reversibly and adiabatically
to twice its initial volume the final pressure will be

v Y 1 5/3
—| i = = X (100 kPa) =31.5 kPa
8 (ij & (ZJ ( )

For an isothermal doubling of volume, the final pressure would be 50 kPa. ®



We now transform the remaining partial derivative. With V
regarded as a function of p and T, when these two quantities change
the resulting change in V'is

1% 1%
o[22 are (2] o -
oT A p )r

If (as in eqn 2.56) we require the volume to be constant, dV=0
implies that

oV vV

— |dT=—| — | dp at constant volume (2.57)

oT ; p )r

Discussion questions
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On division by dT, this relation becomes

(ﬂ) :_[B_Vj (B_PJ (258)
oT . ap ) \oT ),
and therefore
aV/oT
9p | __OVIOD), o (2.59)
aT ), (VIdp); Kr

Insertion of this relation into eqn 2.55 produces eqn 2.48.

2.1 Provide mechanical and molecular definitions of work and heat.

2.2 Consider the reversible expansion of a perfect gas. Provide a physical
interpretation for the fact that pV”= constant for an adiabatic change,
whereas pV = constant for an isothermal change.

2.3 Explain the difference between the change in internal energy and the
change in enthalpy accompanying a chemical or physical process.

Exercises

2.4 Explain the significance of a physical observable being a state function and
compile a list of as many state functions as you can identify.

2.5 Explain the significance of the Joule and Joule-Thomson experiments.
What would Joule observe in a more sensitive apparatus?

2.6 Suggest (with explanation) how the internal energy of a van der Waals gas
should vary with volume at constant temperature.

Assume all gases are perfect unless stated otherwise. Unless otherwise stated,
thermodynamic data are for 298.15 K.

2.1(a) Calculate the work needed for a 65 kg person to climb through 4.0 m
on the surface of (a) the Earth and (b) the Moon (g=1.60 m s72).

2.1(b) Calculate the work needed for a bird of mass 120 g to fly to a height of
50 m from the surface of the Earth.

2.2(a) A chemical reaction takes place in a container of cross-sectional
area 100 cm?. As a result of the reaction, a piston is pushed out through
10 cm against an external pressure of 1.0 atm. Calculate the work done by
the system.

2.2(b) A chemical reaction takes place in a container of cross-sectional
area 50.0 cm?. As a result of the reaction, a piston is pushed out through
15 cm against an external pressure of 121 kPa. Calculate the work done
by the system.

2.3(a) A sample consisting of 1.00 mol Ar is expanded isothermally at 0°C
from 22.4 dm’ to 44.8 dm® (a) reversibly, (b) against a constant external
pressure equal to the final pressure of the gas, and (c) freely (against zero
external pressure). For the three processes calculate g, w, AU, and AH.

2.3(b) A sample consisting of 2.00 mol He is expanded isothermally at 22°C
from 22.8 dm? to 31.7 dm? (a) reversibly, (b) against a constant external
pressure equal to the final pressure of the gas, and (c) freely (against zero
external pressure). For the three processes calculate g, w, AU, and AH.

2.4(a) A sample consisting of 1.00 mol of perfect gas atoms, for which
Cym =%R, initially at p, = 1.00 atm and T, = 300 K, is heated reversibly to
400 K at constant volume. Calculate the final pressure, AU, g, and w.

2.4(b) A sample consisting of 2.00 mol of perfect gas molecules, for which
Cym=3R, initially at p, = 111 kPa and T, =277 K, is heated reversibly to
356 K at constant volume. Calculate the final pressure, AU, g, and w.

2.5(a) A sample of 4.50 g of methane occupies 12.7 dm® at 310 K.

(a) Calculate the work done when the gas expands isothermally against

a constant external pressure of 200 Torr until its volume has increased by
3.3 dm>. (b) Calculate the work that would be done if the same expansion
occurred reversibly.

2.5(b) A sample of argon of mass 6.56 g occupies 18.5 dm? at 305 K.

(a) Calculate the work done when the gas expands isothermally against

a constant external pressure of 7.7 kPa until its volume has increased by
2.5 dm’. (b) Calculate the work that would be done if the same expansion
occurred reversibly.

2.6(a) A sample of 1.00 mol H,O(g) is condensed isothermally and
reversibly to liquid water at 100°C. The standard enthalpy of vaporization
of water at 100°C is 40.656 k] mol ™. Find w, g, AU, and AH for this
process.

2.6(b) A sample of 2.00 mol CH;OH(g) is condensed isothermally and
reversibly to liquid at 64°C. The standard enthalpy of vaporization of
methanol at 64°C is 35.3 kJ mol ™. Find w, g, AU, and AH for this process.

2.7(a) A strip of magnesium of mass 15 g is placed in a beaker of dilute
hydrochloric acid. Calculate the work done by the system as a result of the
reaction. The atmospheric pressure is 1.0 atm and the temperature 25°C.

2.7(b) A piece of zinc of mass 5.0 g is placed in a beaker of dilute hydrochloric
acid. Calculate the work done by the system as a result of the reaction.
The atmospheric pressure is 1.1 atm and the temperature 23°C.
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2.8(a) The constant-pressure heat capacity of a sample of a perfect gas was
found to vary with temperature according to the expression C,/(J K=
20.17 + 0.3665(T/K). Calculate g, w, AU, and AH when the temperature is
raised from 25°C to 200°C (a) at constant pressure, (b) at constant volume.

2.8(b) The constant-pressure heat capacity of a sample of a perfect gas was
found to vary with temperature according to the expression C,/(J K=

20.17 +0.4001(T/K). Calculate g, w, AU, and AH when the temperature is
raised from 0°C to 100°C (a) at constant pressure, (b) at constant volume.

2.9(a) Calculate the final temperature of a sample of argon of mass 12.0 g
that is expanded reversibly and adiabatically from 1.0 dm? at 273.15 K to
3.0 dm’.

2.9(b) Calculate the final temperature of a sample of carbon dioxide of mass
16.0 g that is expanded reversibly and adiabatically from 500 cm? at 298.15 K
t0 2.00 dm’.

2.10(a) A sample of carbon dioxide of mass 2.45 g at 27.0°C is allowed to
expand reversibly and adiabatically from 500 cm? to 3.00 dm®. What is the
work done by the gas?

2.10(b) A sample of nitrogen of mass 3.12 g at 23.0°C is allowed to expand
reversibly and adiabatically from 400 cm? to 2.00 dm®. What is the work done
by the gas?

2.11(a) Calculate the final pressure of a sample of carbon dioxide that
expands reversibly and adiabatically from 57.4 kPa and 1.0 dm® to a final
volume of 2.0 dm>. Take y=1.4.

2.11(b) Calculate the final pressure of a sample of water vapour that expands
reversibly and adiabatically from 87.3 Torr and 500 cm? to a final volume of
3.0 dm’. Take y=1.3.

2.12(a) When 229 J of energy is supplied as heat to 3.0 mol Ar(g) at constant
pressure, the temperature of the sample increases by 2.55 K. Calculate the
molar heat capacities at constant volume and constant pressure of the gas.

2.12(b) When 178 ] of energy is supplied as heat to 1.9 mol of gas molecules
at constant pressure, the temperature of the sample increases by 1.78 K.
Calculate the molar heat capacities at constant volume and constant pressure
of the gas.

2.13(a) When 3.0 mol O, is heated at a constant pressure of 3.25 atm, its
temperature increases from 260 K to 285 K. Given that the molar heat capacity
of O,(g) at constant pressure is 29.4 J K™ mol™, calculate g, AH, and AU.

2.13(b) When 2.0 mol CO, is heated at a constant pressure of 1.25 atm, its
temperature increases from 250 K to 277 K. Given that the molar heat capacity
of CO,(g) at constant pressure is 37.11J K™ mol™, calculate g, AH, and AU.

2.14(a) A sample of 4.0 mol O,(g) is originally confined in 20 dm? at 270 K
and then undergoes adiabatic expansion against a constant pressure of

600 Torr until the volume has increased by a factor of 3.0. Calculate g, w, AT,
AU, and AH. (The final pressure of the gas is not necessarily 600 Torr.)

2.14(b) A sample of 5.0 mol CO,(g) is originally confined in 15 dm? at 280 K
and then undergoes adiabatic expansion against a constant pressure of
78.5 kPa until the volume has increased by a factor of 4.0. Calculate g, w, AT,
AU, and AH. (The final pressure of the gas is not necessarily 78.5 kPa.)

2.15(a) A sample consisting of 1.0 mol of perfect gas molecules with
Cy=20.8 ] K!is initially at 3.25 atm and 310 K. It undergoes reversible
adiabatic expansion until its pressure reaches 2.50 atm. Calculate the final
volume and temperature and the work done.

2.15(b) A sample consisting of 1.5 mol of perfect gas molecules with
Cp,m=20.8 ] K™ mol™" is initially at 230 kPa and 315 K. It undergoes
reversible adiabatic expansion until its pressure reaches 170 kPa. Calculate

the final volume and temperature and the work done.

2.16(a) A certain liquid has A, H®=26.0 k] mol". Calculate g, w, AH,
and AU when 0.50 mol is vaporized at 250 K and 750 Torr.

2.16(b) A certain liquid has A, H®=32.0 k] mol™". Calculate g, w, AH,
and AU when 0.75 mol is vaporized at 260 K and 765 Torr.

2.17(a) Calculate the lattice enthalpy of Srl, from the following data:

AH/(kJ mol™)
Sublimation of Sr(s) +164
Tonization of Sr(g) to Sr**(g) +1626
Sublimation of I,(s) +62
Dissociation of I,(g) +151
Electron attachment to I(g) -304
Formation of SrI,(s) from Sr(s) and I,(s) —558

2.17(b) Calculate the lattice enthalpy of MgBr, from the following data:

AH/(k] mol™)

Sublimation of Mg(s) +148
Ionization of Mg(g) to Mg?*(g) +2187
Vaporization of Br,(1) +31
Dissociation of Br,(g) +193
Electron attachment to Br(g) —331
Formation of MgBr,(s) from Mg(s) and Br,(1) —524

2.18(a) The standard enthalpy of formation of ethylbenzene is —12.5 k] mol ™.
Calculate its standard enthalpy of combustion.

2.18(b) The standard enthalpy of formation of phenol is —165.0 k] mol~.
Calculate its standard enthalpy of combustion.

2.19(a) The standard enthalpy of combustion of cyclopropane is —2091 k]
mol™" at 25°C. From this information and enthalpy of formation data for
CO,(g) and H,0(g), calculate the enthalpy of formation of cyclopropane.
The enthalpy of formation of propene is +20.42 kJ mol ™. Calculate the
enthalpy of isomerization of cyclopropane to propene.

2.19(b) From the following data, determine A(H* for diborane, B,H,(g), at
298 K:
(1) B,H¢(g) +3 O,(g) = B,0,(s) + 3 H,0(g)
(2) 2B(s) +3 0,(g) — B,O,(s)
(3) Hy(g) +%Oz(g) — H,0(g)

A, H®=-2036 k] mol™
A, H®=-1274k] mol™
A, H®=-241.8 k] mol™!

2.20(a) When 120 mg of naphthalene, C, Hg(s), was burned in a bomb
calorimeter the temperature rose by 3.05 K. Calculate the calorimeter
constant. By how much will the temperature rise when 10 mg of phenol,
C¢H;OH(s), is burned in the calorimeter under the same conditions?

2.20(b) When 2.25 mg of anthracene, C,,H,(s), was burned in a bomb
calorimeter the temperature rose by 1.35 K. Calculate the calorimeter constant.
By how much will the temperature rise when 135 mg of phenol, C;H;OH(s),

is burned in the calorimeter under the same conditions? (A.H*(C, H,,s) =
~7061 kJ mol™'.)

2.21(a) Calculate the standard enthalpy of solution of AgCl(s) in water from
the enthalpies of formation of the solid and the aqueous ions.

2.21(b) Calculate the standard enthalpy of solution of AgBr(s) in water from
the enthalpies of formation of the solid and the aqueous ions.

2.22(a) The standard enthalpy of decomposition of the yellow complex
H;NSO, into NH; and SO, is +40 k] mol™". Calculate the standard enthalpy
of formation of H;NSO,.



2.22(b) Given that the standard enthalpy of combustion of graphite is
—393.51 k] mol™" and that of diamond is —395.41 kJ mol ™!, calculate the
enthalpy of the graphite-to-diamond transition.

2.23(a) Given the reactions (1) and (2) below, determine (a) A,H®and A, U®
for reaction (3), (b) A;H* for both HCI(g) and H,O(g) all at 298 K.

(1) H,(g)+Cl,(g) » 2 HCl(g)

(2) 2H,(g)+0,(g) > 2H,0(g)

(3) 4HCl(g) + O,(g) > 2 Cly(g) +2 H,0(g)

A H®=-184.62 k] mol™
A H®=-483.64k] mol™

2.23(b) Given the reactions (1) and (2) below, determine (a) A, H*and A .U®
for reaction (3), (b) AcH* for both HI(g) and H,0O(g) all at 298 K.

(1) Hy(g) +1,(s) > 2 Hl(g)

(2) 2H,(g) +0,(g) > 2H,0(g)

(3) 4HI(g) +O0,(g) = 21,(s) + 2 H,0(g)

2.24(a) For the reaction C,H;OH(l) +3 O,(g) — 2 CO,(g) + 3 H,0(g),
A U®=-1373 k] mol™ at 298 K, calculate A, H®.

A H®=+52.96 k] mol™!
A H®=-483.64k] mol™

2.24(b) For the reaction 2 C;H;COOH(s) + 13 O,(g) = 12 CO,(g) +
6 H,0(g), A,U®=-772.7 k] mol™" at 298 K, calculate A H®.

2.25(a) Calculate the standard enthalpies of formation of (a) KClO4(s) from

the enthalpy of formation of KCI, (b) NaHCOj;(s) from the enthalpies of

formation of CO, and NaOH together with the following information:
2KClO5(s) = 2 KClI(s) + 3 O,(g)
NaOH(s) + CO,(g) — NaHCOs(s)

A, H®=-89.4k] mol™
A H®=-127.5k] mol™

2.25(b) Calculate the standard enthalpy of formation of NOCI(g) from the
enthalpy of formation of NO given in Table 2.8, together with the following
information:

2NOCl(g) — 2 NO(g) + Cl,(g) A H®=+75.5k] mol™

2.26(a) Use the information in Table 2.8 to predict the standard reaction
enthalpy of 2 NO,(g) = N,0,(g) at 100°C from its value at 25°C.

2.26(b) Use the information in Table 2.8 to predict the standard reaction
enthalpy of 2 H,(g) + O,(g) — 2 H,0(l) at 100°C from its value at 25°C.

2.27(a) From the data in Table 2.8, calculate A H*and A U* at (a) 298 K,
(b) 378 K for the reaction C(graphite) + H,0(g) — CO(g) + H,(g). Assume
all heat capacities to be constant over the temperature range of interest.

2.27(b) Calculate A.H®and A . U®at 298 Kand A H*® at 348 K for the
hydrogenation of ethyne (acetylene) to ethene (ethylene) from the enthalpy
of combustion and heat capacity data in Tables 2.6 and 2.8. Assume the heat
capacities to be constant over the temperature range involved.

2.28(a) Calculate A H® for the reaction Zn(s) + CuSO,(aq) — ZnSO,(aq) +
Cu(s) from the information in Table 2.8 in the Data section.

2.28(b) Calculate A, H® for the reaction NaCl(aq) + AgNO;(aq) — AgCl(s) +
NaNOj;(aq) from the information in Table 2.8 in the Data section.

2.29(a) Set up a thermodynamic cycle for determining the enthalpy of
hydration of Mg?* ions using the following data: enthalpy of sublimation of
Mg(s), +167.2 k] mol™); first and second ionization enthalpies of Mg(g),
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7.646 eV and 15.035 eV; dissociation enthalpy of Cl,(g), +241.6 k] mol™;
electron gain enthalpy of Cl(g), —3.78 eV; enthalpy of solution of MgCl,(s),
—150.5 k] mol™'; enthalpy of hydration of CI™(g), —383.7 k] mol™".

2.29(b) Set up a thermodynamic cycle for determining the enthalpy of
hydration of Ca* ions using the following data: enthalpy of sublimation
of Ca(s), +178.2 k] mol™; first and second ionization enthalpies of Ca(g),
589.7 k] mol™ and 1145 kJ mol™'; enthalpy of vaporization of bromine,
30.91 kJ mol™; dissociation enthalpy of Br,(g), +192.9 k] mol™!; electron
gain enthalpy of Br(g), —331.0 k] mol™'; enthalpy of solution of CaBr,(s),
—103.1 kJ mol™!; enthalpy of hydration of Br™(g), =97.5 k] mol ™.

2.30(a) When a certain freon used in refrigeration was expanded adiabatically
from an initial pressure of 32 atm and 0°C to a final pressure of 1.00 atm, the
temperature fell by 22 K. Calculate the Joule—Thomson coefficient, u, at 0°C,
assuming it remains constant over this temperature range.

2.30(b) A vapour at 22 atm and 5°C was allowed to expand adiabatically to

a final pressure of 1.00 atm; the temperature fell by 10 K. Calculate the
Joule—Thomson coefficient, , at 5°C, assuming it remains constant over this
temperature range.

2.31(a) Foravan der Waals gas, 77;,= a/ V2. Calculate AU, for the isothermal
expansion of nitrogen gas from an initial volume of 1.00 dm? to 24.8 dm? at
298 K. What are the values of g and w?

2.31(b) Repeat Exercise 2.31(a) for argon, from an initial volume of 1.00 dm>
t0 22.1 dm> at 298 K.

2.32(a) The volume of a certain liquid varies with temperature as
V=V"{0.75+3.9 X 10(T/K) + 1.48 X 10~5(T/K)?}
where V is its volume at 300 K. Calculate its expansion coefficient, o, at 320 K.
2.32(b) The volume of a certain liquid varies with temperature as
V=V"{0.77 +3.7 x 107(T/K) + 1.52 X 10~5(T/K)*}

where V” is its volume at 298 K. Calculate its expansion coefficient, o, at 310 K.

2.33(a) The isothermal compressibility of copper at 293 K is 7.35 x 10~ atm™.

Calculate the pressure that must be applied in order to increase its density by
0.08 per cent.

2.33(b) The isothermal compressibility of lead at 293 K is 2.21 X 10® atm™.
Calculate the pressure that must be applied in order to increase its density by
0.08 per cent.

2.34(a) Given that = 0.25 K atm™ for nitrogen, calculate the value of its
isothermal Joule-Thomson coefficient. Calculate the energy that must be
supplied as heat to maintain constant temperature when 15.0 mol N, flows
through a throttle in an isothermal Joule-Thomson experiment and the
pressure drop is 75 atm.

2.34(b) Given that g=1.11 Katm™ for carbon dioxide, calculate the value of
its isothermal Joule—Thomson coefficient. Calculate the energy that must be
supplied as heat to maintain constant temperature when 12.0 mol CO, flows
through a throttle in an isothermal Joule-Thomson experiment and the
pressure drop is 55 atm.
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E2.1(a) On Earth: 2.6 x 10° ] needed, on the moon: 4.2 x 10” ] needed
E2.2(a) -1.0x10%]
E2.3(a) (a)w=-1.57kJ,q=+1.57kJ (b) w=—1.13k],g=+1.13kJ (c) 0
E2.4(a) p,=1.33atm,w=0,q=AU=+1.25k]
E2.5(a) (a)—88](b)—167]
E2.6(a) AH=g=-40.656k], w=3.10k], AU=-37.55k]
E2.7(a) w=-1.5Kk]
E2.8(a) (a) g=AH=+2.83x10%]=+28.3kJ, w=—1.45k],
AU=+26.8k]
(b) AH=+28.3kJ, AU=+26.8k], w=0, g=+26.8 k]
E29(a) 131K
E2.10(a) w=-194]
E2.11(a) 22kPa
E2.12(a) C,,=30]JK ' mol™, Cy,,=22JK™" mol™*
E2.13(a) q,=+22kJ,AH=+2.2k],AU=+1.6K]
E2.14(a) w=-3.2k],AU=-3.2k],AT=-38K,AH=-4.5K]
E2.15(a) V;=0.00944 m’, T;=288 K, w=—4.6 x 107 ]
E2.16(a) q=+13.0k], w=—1.0k],AU=12.0k]J



E2.17(a) A H®(Srl,,s) =1953 k] mol™
E2.18(a) —4564.7 k] mol™!
E2.19(a) A(H[(CH,);,gl=+53k] mol™', A H=-33 k] mol™!
E2.20(a) A.U®=-5152kImol™, C=1.58kJ K™, AT=205K
E2.21(a) +65.49 k] mol™
E2.22(a) —383kJ mol™
E2.23(a) (a) A H®(3)=-114.40kJ mol™, A U=-111.92 k] mol™!
(b) A{H®(HCLg)=-92.31kJ mol™,
A;H®(H,0,g) =-241.82 k] mol ™
E2.24(a) —1368 k] mol™!
E2.25(a) (a)—392.1 k] mol™! (b)-946.6 k] mol™’
E2.26(a) —56.98 k] mol™!
E2.27(a) (a) A,H®(298 K)=+131.29kJ mol™},
A, U®(298 K)=+128.81 k] mol™’
(b) A H®(378 K)=+132.56 k] mol~,
A, U®(378 K) =+129.42 k] mol™
E2.28(a) —218.66 k] mol™
E2.29(a) —1892 k] mol™’
E2.30(a) 0.71 Katm™
E2.31(a) AU =131]Jmol™, g=+8.05x10?] mol™!, w=-7.92 x 10* ] mol™!
E2.32(a) 1.31x10°K™!
E2.33(a) 1.1 x10%atm

E2.34(a) (%] =—7.2] atm™ mol™, q(supplied) =+8.1 kJ
P )r
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