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Abstract
Afinite order P on a setV is reconstructible (respectively, reconstructible up to duality)
by its comparability graph if each order on V which has the same comparability graph
as P is isomorphic to P (respectively, is isomorphic to P or to its dual P�). In this
paper, we describe the finite orders which are reconstructible up to duality by their
comparability graphs. This result is motivated by the characterization, obtained by
Gallai (Acta Math Acad Sci Hungar 18:25–66, 1967), of the pairs of finite orders
having the same comparability graph. Notice that a characterization of the finite orders
which are reconstructible by their comparability graphs is easily deduced fromGallai’s
result.
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1 Introduction

In various domains ofmathematics, it is natural to investigate the relationships between
the global properties and the local properties of a given structure. In the context of
finite discrete structures, the idea of reconstruction is to describe a structure in terms of
certain types of its substructures. The origins of reconstruction are: Ulam’s conjecture
for finite graphs [2,3,27], the problemofDas for finite orders [12,21], Fraïssé’s problem
for finite relations [16], and the problem of Pouzet for finite binary relations [2,3]. The
origin of half-reconstruction is the problem of Hagendorf for binary relations [20].
Recently, the reconstruction of graphs up to complementation, which corresponds to
the half-reconstruction for digraphs, is studied [10,11,24,25].

Throughout this paper, the word “order” will mean a finite order.
Let P be an order on a set of vertices V .
The elements x and y of V are comparable if either x < y or y < x in P; otherwise

they are incomparable and we write x ‖ y. For disjoint subsets X and Y of V , X < Y
(resp. X ‖ Y ) means that x < y (resp. x ‖ y) for every (x, y) ∈ X × Y . To simplify,
we write x < Y (resp. X < y) for {x} < Y (resp. X < {y}), and x ‖ Y for {x} ‖ Y .

The comparability graph of P is the symmetric graph Comp(P) =
(V , E(Comp(P)), where {x, y} ∈ E(Comp(P)) whenever x �= y and x and y are
comparable. The order P is connected if Comp(P) is connected, and the connected
components of P are those of Comp(P). Let X be a subset of V . We denote by P�X

the order induced by P on X . The subset X is a chain if P�X is linear, and it is an
antichain if its elements are pairwise incomparable. We say that P is a chain (resp.
antichain) whenever V is a chain (resp. an antichain).

An isomorphism f from P onto an order P ′ on a set V ′ is a bijection from V onto
V ′ such that x ≤ y in P if and only if f (x) ≤ f (y) in P ′, for any x, y ∈ V . The
orders P and P ′ are isomorphic, in which case we write P ∼= P ′, if there exists an
isomorphism from P onto P ′.

The dual of P is the order denoted by P� and defined on the set V as follows: x ≤ y
in P� if and only if y ≤ x in P . The order P is self-dual if it is isomorphic to its dual.

An order is isomorphic up to duality to P if it is isomorphic to P or to its dual P�.
The order P is reconstructible (respectively, reconstructible up to duality) by its

comparability graph if each order on V which has the same comparability graph as P
is isomorphic to P (respectively, is isomorphic up to duality to P).

The following remark is trivial.

Remark 1.1 Let P be an order.

(1) If P is reconstructible by its comparability graph, then P is reconstructible up to
duality by its comparability graph.

(2) If P is reconstructible up to duality by its comparability graph and P is self-dual,
then P is reconstructible by its comparability graph.

Let Pi = (Vi ,≤i ), i = 1, 2, ..., n, be orders such that the Vi ’s are pairwise disjoint.
The disjoint sum P1 + · · · + Pn (respectively, direct sum (ordinal sum or linear sum)
P1 ⊕ · · · ⊕ Pn) is the order (V ,≤), where V = V1 ∪ · · · ∪ Vn and a ≤ b if a ≤i b in
Pi for some i (respectively, if a ≤i b in Pi for some i or a ∈ Vi and b ∈ Vj for some
i < j).
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Let P be an order on a set of vertices V .
A subset M of V is amodule [26] of P if for each element x of V \ M , either x < M

or M < x or x ‖ M . This concept is also named interval in [17] and autonomous set in
[18]. The sets V , φ, and the singletons {x}, where x ∈ V , are modules of P which are
called trivial. The order P is indecomposable if all its modules are trivial; otherwise it
is decomposable. Observing that all orders with three vertices are decomposable, we
say that an order is prime if it is indecomposable with at least four vertices.

Given a subset M of V , we say that M is self-dual, respectively is isomorphic,
respectively is isomorphic up to duality, to an order Q, if P�M is self-dual, respectively
is isomorphic, respectively is isomorphic up to duality, to Q.

Amodular partition of P is a partition V of V such that all its elements are modules
of P . The quotient P/V of P by V is the order on V defined as follows: X < Y in
P/V if and only if x < y in P for each x ∈ X and each y ∈ Y .

A module M of P is strong if either M ′ ⊆ M or M ⊆ M ′ for every module M ′ of
P such that M ∩ M ′ �= φ. The trivial modules are strong.

For | V |≥ 2, the set G(P) of maximal (with respect to inclusion) strong proper
modules of P is a modular partition of P , called the canonical partition of P , and
the elements of G(P) are the modular components of P . For | V |≤ 1, the unique
partition of the set V is called the canonical partition of P . We consider ∅ as the
unique partition of ∅.

The frame of P is its quotient by its canonical partition.
The following Gallai decomposition theorem of orders plays an essential role in

our study.

Theorem 1.2 [18,23] (Gallai’s decomposition) Given an order P on at least two
elements, the frame P/G(P) of P is either prime, a chain, or an antichain.

Let M be a module of P , and Q be an order on M with Comp(Q) = Comp(P�M ).
The order obtained from P by replacing P�M by Q is the order, denoted by M PQ ,
defined on V as follows: (M PQ)�M = Q, and for x, y ∈ V such that {x, y} \ M �= ∅,
x ≤ y in M PQ if and only if x ≤ y in P . Clearly, M is a module of the order M PQ

and Comp(M PQ) = Comp(P). In case Q = P�
�M , we denote M PQ by I nv(M, P)

and say that M PQ is obtained from P by module inversion.
Let S = {M1, M2, ..., Mk} be a set of disjoint modules of P , and let T =

{Q1, Q2, ..., Qk} be a set of orders such that Q1, Q2, ..., Qk are defined on
M1, M2, ..., Mk , respectively. We denote by S PT the order obtained from P by
successive iterations of replacement of the orders P�M1 , P�M2 , ..., P�Mk as follows:
S PT = Pk , where Pi+1 =Mi+1 (Pi )Qi+1 for 0 ≤ i ≤ k − 1 and P0 = P .

In case Qi = P∗
�Mi

for i = 1, 2, ..., k, we use I nv(S, P) instead of S PT as follows:
I nv(S, P) = Pk , where Pi+1 = I nv(Mi+1, Pi ) for 0 ≤ i ≤ k − 1, and P0 = P .

Given an order P ′ on V , PIP ′ signifies that there are orders P0 = P, ..., Pn = P ′
such that for 0 ≤ i ≤ n − 1, Pi+1 = I nv(Mi , Pi ), where Mi is a module of Pi .

The Gallai inversion theorem is the following.

Theorem 1.3 [18] (Gallai’s inversion)Given two orders P and Q with the same vertex
set, Comp(P) = Comp(Q) if and only if PIQ.
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Fig. 1 .

Notice that a generalization of the Gallai inversion theorem for digraphs was
obtained in [8].

Given two orders H and K with a unique common vertex v, we denote by H(v, K )

the order obtained from H by dilating H on the vertex v by K as follows. The set of
vertices of H(v, K ) is V (H) ∪ V (K ), H(v, K )�V (H) = H , H(v, K )�V (K ) = K , and
V (K ) is a module of H(v, K ).

Example 1.4 (See Fig. 1). Consider the orders P, Q, N , V , R and S represented by
their Hasse diagrams in Figure 1.

Since each of the orders P and Q has exactly two vertices, these orders are inde-
composable. It is easy to verify that the order N is prime. Therefore, for each element
H of {P, Q, N }, G(H) = {{x} : x ∈ V (H)} and the frame of H is isomorphic to H .

The order V is obtained by dilating P on the vertex b by Q. Thus, V = P(b, Q).
Moreover, V is decomposable with G(V ) = {{a}, {b, c}}, and its frame is a chain
isomorphic to P .

The order R is obtained by dilating N on the vertex a by P . Thus, R = N (a, P).
Moreover, R is decomposable with G(R) = {{a, b}, {c}, {e}, { f }}, and its frame is a
prime order isomorphic to N .

The order S is obtained by dilating N on the vertex c by Q. Thus, S = N (c, Q).
Moreover, S is decomposable with G(S) = {{b, c}, {a}, {e}, { f }}, and its frame is a
prime order isomorphic to N .

2 Presentation of the Results

In order to state our results, we introduce the following notations and definition.

Notation 2.1 We consider the following classes of orders.

• H = {P : P is an order which is reconstructible up to duality by its comparability
graph}.

• For every integer n ≥ 0,Hn = {P ∈ H : P has exactly n non-self-dual modules}.
Notice that H = ∪

n≥0
Hn .

Notation 2.2 Consider the following subclasses of the class Ho.
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• H0,p = {P ∈ H0 : the f rame of P is prime}.
• H0,c = {P ∈ H0 : the f rame of P is a chain}.
• H0,a = {P ∈ H0 : the f rame of P is an antichain}.
Clearly, H0,p ∩ H0,c = H0,p ∩ H0,a = ∅,
H0,c ∩ H0,a = {P : P is an order wi th at most one vertex}. Moreover, by

Theorem 1.2, Ho = H0,p ∪ H0,c ∪ H0,a , and H0,c ∪ H0,p is the class of connected
members ofH0.

Definition 2.3 Let P be an order on a set V , with | V |≥ 4, satisfying the following
conditions:

• The frame Q = P/G(P) of P is prime;
• There exist a vertex x with {x} ∈ G(P) and an isomorphism fx from Q onto Q�

such that fx ({x}) = {x}, and for every M ∈ G(P)\ {{x}}, the induced orders P�M

and P� fx (M) are isomorphic members ofH0.

Clearly, P is self-dual. Such an element x is called a good vertex, such an iso-
morphism fx is called a good isomorphism associated with x , and P is called a good
self-dual order.

Our first result is the following characterization of the orders which are recon-
structible by their comparability graphs, which is easily deduced from the Gallai
inversion theorem.

Proposition 2.4 An order P is reconstructible by its comparability graph if and only
if every module of P is self-dual.

Our main result is the following description of the orders which are reconstructible
up to duality by their comparability graphs.

Theorem 2.5 (1) An order P belongs to H0 if and only if all its modules are self-dual.
(2) An order P belongs toH1 if and only if either P is non-self-dual with a prime frame

and P�X ∈ H0 for every X ∈ G(P), or P is the direct sum of two non-isomorphic
members of H0,p ∪ H0,a.

(3) For k ≥ 2, an order P belongs to Hk if and only if it satisfies one of the following
two assertions.

(a) P is obtained from a good self-dual order by dilating a good vertex by a
member of Hk−1.

(b) P is the disjoint sum of q − 1 members of H0,c ∪ H0,p and one connected
member of Hk−2q−1+1, where 2 ≤ q ≤ log2(k) + 1.

Thus, by Theorem 2.5, the class of the orders which are reconstructible up to
duality by their comparability graphs is described by means of a recursive procedure
and makes use of Gallai’s decomposition.

Our work is also motivated by the problem of (≤ k)-reconstruction (respectively,
(≤ k)-half-reconstruction) of binary relations which was introduced by Fraïssé’s
[16] (respectively, Hagendorf [20]). Indeed, Proposition 2.4 characterizes the (≤ 2)-
reconstructible orders, and Theorem 2.5 describes the (≤ 2)-half-reconstructible
orders (see Sect. 6).
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Finally, notice that our method of the description of the orders which are recon-
structible up to duality by their comparability graphs is similar to the method of the
description of the (≤ 3)-half-reconstructible finite tournaments obtained by Boudab-
bous et al [5].

3 Preliminaries

In this section, we recall and prove some results which are needed as major tools in
our proofs.

The following lemma lists some basic properties of modules.

Lemma 3.1 [13] Let P be an order.

(1) The sets ∅, V and {x}, where x ∈ V , are modules of P.
(2) If M, N are modules of P, then M ∩ N is a module of P.
(3) If M, N are nondisjoint modules of P, then M ∪ N is a module of P.
(4) If M, N are modules of P such that M \ N �= ∅, then N \ M is a module of P.
(5) If M, N are disjoint modules of P, then either M < N or N < M or M ‖ N.
(6) Given a module M of P and a subset W of V , the trace M ∩ W is a module of the

induced order P�W .
(7) If M is a module of P and N is a module of P�M , then N is a module of P.

Notice that (5) justifies the definition of the quotient order.
The following result is the key of the Gallai inversion theorem.

Corollary 3.2 [18] Let P be a prime order on a set V . If P ′ is an order on V such that
Comp(P) = Comp(P ′), then either P ′ = P or P ′ = P�.

The following corollary is easily deduced from Corollary 3.2.

Corollary 3.3 Let P and P ′ be two orders with the same vertex set V with | V |≥ 2.
If Comp(P) = Comp(P ′), then the following assertions hold.

(1) G(P ′) = G(P).
(2) If P/G(P) is prime, then either P ′/G(P) = P/G(P) or P ′/G(P) = P�/G(P).
(3) If P/G(P) is an antichain, then P ′/G(P) is an antichain.
(4) If P/G(P) is a chain, then P ′/G(P) is a chain.

Notice that (3) and (4) are trivial consequences of (1) and (2).

Remark 3.4 Let P = (V ,≤) be an order with | V |≥ 2.

(1) If the frame P/G(P) of P is prime, then the Gallai partition G(P) of P is the set
of the maximal proper modules of P .

(2) If Q is a modular partition of P for which the corresponding quotient P/Q is
prime, then Q = G(P).

(3) If P/G(P) is a chain V1 < V2 < · · · < Vm , then a subset M of V is a module of
P if and only if M is a module of some P�Vi or there are 1 ≤ i1 ≤ i2 ≤ m such
that M = ∪

i1≤i≤i2
Vi .
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(4) If P/G(P) is an antichain, then a subset M of V is a module of P if and only if
there is a member A of G(P) such that M is a module of P�A or M is the union
of some members of G(P).

(5) If P has a modular partition Q with | Q |≥ 2 such that the quotient P/Q is a chain
(respectively, an antichain), then the frame of P is a chain (resp. an antichain) and
G(P) is the largest modular partition of P for which the corresponding quotient
is a chain (respectively, an antichain).

(6) If the frame P/G(P) of P is prime, then a proper subset M of V is a module of
P if and only if there is a member A of G(P) such that M is a module of P�A.

(7) The order P is not connected if and only if P/G(P) is an antichain. Moreover, if
P is not connected, then G(P) is the set of connected components of P .

Remark 3.5 Let P be an order, on at least two elements, with a chain (respectively, an
antichain) frame. Then, for every M ∈ G(P) with | M |≥ 2, the frame of P�M is not
a chain (respectively, is not an antichain).

The next result is “the balanced lemma.”

Lemma 3.6 [7] Let P, Q, and Q′ be orders with vertex sets V (P) = {1, 2, ..., n},
where n ≥ 2, V (Q), V (Q′), respectively, such that V (P)∩V (Q) = V (P)∩V (Q′) =
{k}. Then P(k, Q) ∼= P(k, Q′) if and only if Q ∼= Q′.

Notice that Lemma 3.6 was firstly communicated by A. Boussaïri, and a detailed
proof of this lemma is presented by J. Dammak in [9].

Finally, let P = (V ,≤) be an order, with | V |≥ 2, such that its frame P/G(P) is
a chain. The modular partition ˜G(P) is defined as follows. For A ⊆ V , A ∈ ˜G(P) if
and only if A ∈ G(P) with | A |≥ 2, or A is a maximal union of consecutive vertices
of P/G(P) which are singletons. Notice that P is a chain if and only if | ˜G(P) |= 1,
and if P is not a chain, then P/˜G(P) is a chain A1 < · · · < Ak with k ≥ 2.

4 Proof of Proposition 2.4

If M is a non-self-dual module of an order P , we consider the order P ′ = I nv(M, P).
By Theorem 1.3, Comp(P ′) = Comp(P).

No, we apply Lemma 3.6 to show that P � P ′. Select a vertex m0 ∈ M and let P0
be the induced order on the set of vertices (V (P) \ M) ∪ {m0}. Since P�M � P∗

�M ,
P = P0(m0, P�M ) � P0(m0, P∗

�M ) = P ′. Hence, P is not reconstructible by its
comparability graph.

Conversely, let P = (V ,≤) be an order such that every module of P is self-
dual. Let P ′ be an order on V such that Comp(P ′) = Comp(P). By Theorem 1.3,
there is a sequence of orders P0 = P, ..., Pn = P ′ such that for 0 ≤ i ≤ n − 1,
Pi+1 = I nv(Mi , Pi ), where Mi is a module of Pi . Since P1 is obtained from P by
module inversion, and every module of P is self-dual, P1 ∼= P0 and hence every
module of P1 is self-dual. By applying this argument to P1 and P2, P2 and P3,..., Pn−1
and Pn , we obtain P ′ ∼= P . ��
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5 Proof of Theorem 2.5

We proceed by establishing some lemmas which are needed for the proof of Theo-
rem 2.5.

The following lemma is an immediate consequence of Remark 1.1 and Proposi-
tion 2.4.

Lemma 5.1 Let P be an order. If P is reconstructible up to duality by its comparability
graph and P is self-dual, then P ∈ H0.

The following corollary follows immediately from Remark 1.1, Proposition 2.4,
and Lemma 5.1.

Corollary 5.2 Let P be an order.

(1) P ∈ H0 if and only if every module of P is self-dual.
(2) If P ∈ Hk with k ≥ 1, then P is non-self-dual.

We need the following notation.

Notation 5.3 Given an order P on at least two elements, and an order Q, we define
the following two sets.

• G(P, Q) = {M ∈ G(P) : P�M is isomor phic to Q}.
• G(P, {Q, Q�}) = {M ∈ G(P) : P�M is isomor phic up to duali t y to Q}.
The following remark is trivial.

Remark 5.4 Let P and P ′ be two orders on at least two elements.

(1) If f is an isomorphism from P onto P ′, then f (G(P)) = G(P ′). Moreover, for
each member M of G(P), f (G(P, P�M )) = G(P ′, P�M ).

(2) If f is an isomorphism from P onto P ′ or (P ′)�, then f (G(P)) = G(P ′). More-
over, for eachmember M of G(P), f (G(P, {P�M , P�

�M })) = G(P ′, {P�M , P�
�M }).

(3) If the frame of P is a chain with first element M and last element N , the frame of
P ′ is a chain with first element M ′ and last element N ′, and f is an isomorphism
from P onto P ′ or (P ′)�, then f ({M, N }) = {M ′, N ′}.

Lemma 5.5 Let P be an order on at least two elements. If P is reconstructible up to
duality by its comparability graph, then for each element X of G(P), the suborder
P�X is reconstructible up to duality by its comparability graph.

Proof We prove by contraposition. Assume that there is an element A of G(P)

such that P�A is not reconstructible up to duality by its comparability graph. Thus,
for every Y ∈ G(P, {P�A, P�

�A}), there is an order QY on the set Y such that
Comp(QY ) = Comp(P�Y ) and QY is not isomorphic up to duality to P�Y . Let P ′ be
the order obtained from P by replacing P�Y by QY for each Y ∈ G(P, {P�A, P�

�A}).
Clearly, Comp(P ′) = Comp(P). Thus, by Corollary 3.3, G(P ′) = G(P). Since
G(P ′, {P�A, P�

�A}) = ∅ and G(P, {P�A, P�
�A}) �= ∅, Remark 5.4 (2) implies that P ′

is not isomorphic up to duality to P . Thus, P is not reconstructible up to duality by
its comparability graph. ��
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Lemma 5.6 Let P be an order on a set V with | V |≥ 2. If P is reconstructible up to
duality by its comparability graph, then there is at most one member M of G(P) such
that the order P�M is non-self-dual.

Proof To the contrary, suppose that the set F of non-self-dual members of G(P) has
at least two elements. We consider the following two cases.

Case 1. There are two elements M1, M2 of F such that the orders P�M1 and P�M2

are not isomorphic up to duality.
We consider the sets F1 = G(P, P�M1), F�

1 = G(P, P�
�M1

), F2 = G(P, P�M2)

andF�
2 = G(P, P�

�M2
), which are subsets ofF , and the orders P1 = I nv(F�

1 ∪F�
2 , P)

and P2 = I nv(F1∪F�
2 , P). By Theorem 1.3,Comp(P1) = Comp(P2) = Comp(P).

Hence, G(P1) = G(P2) = G(P), by Corollary 3.3.
On the other hand, it is easy to verify that:
G(P1, P�

�M1
}) = G(P1, P�

�M2
}) = ∅, G(P2, P�M1}) = G(P2, P�

�M2
}) =

∅, G(P1, {P�M1 , P�
�M1

}) = G(P1, P�M1) = F1 ∪ F�
1 , G(P1, {P�M2 , P�

�M2
}) =

G(P1, P�M2) = G((P1)
�, P�

�M2
) = F2∪F�

2 ,G(P2, {P�M1 , P�
�M1

}) = G(P2, P�
�M1

) =
F1 ∪ F�

1 , and G(P2, {P�M2 , P�
�M2

}) = G(P2, P�M2) = F2 ∪ F�
2 .

Thus, M1 ∈ G(P1, P�M1), G(P2, P�M1) = ∅, M2 ∈ G((P1)
�, P�

�M2
) and

G(P2, P�
�M2

) = ∅.
Hence, there is no permutation f of V such that f (G(P1, P�M1)) = G(P2, P�M1)

or f (G((P1)
�, P�

�M2
)) = G(P2, P�

�M2
). Thus, Remark 5.4 (1) implies that the order

P2 is neither isomorphic to P1 nor to P�
1 . Hence, P1 and P2 are not isomorphic up

to duality. Therefore, at least one of the orders P1 and P2 is not isomorphic up to
duality to P . This contradicts the fact that P is reconstructible up to duality by its
comparability graph.

Case 2. For every pair {Y , Z} of elements of F , the orders P�Y and P�Z are iso-
morphic up to duality.

Let M1 be an element of F , and consider the sets F1 = G(P, P�M1) and F�
1 =

G(P, P�
�M1

), which are subsets of F .
Clearly, F is a disjoint union of F1 and F�

1 .
We consider the orders P1 = I nv(F�

1 , P) and P2 = I nv(F1 \ {M1}, P). By
Theorem 1.3, Comp(P1) = Comp(P2) = Comp(P). Hence, G(P1) = G(P2) =
G(P), by Corollary 3.3.

On the other hand, it is easy to verify that:
G(P1, P�M1) = G((P1)

�, P�
�M1

) = F , G(P2, P�M1) = {M1}, and G(P2, P�
�M1

) =
F \ {M1}.

We observe that |G(P1, P�M1)| �= |G(P2, P�M1)|, since |F | ≥ 2.
Moreover, | G((P1)

�, P�
�M1

) |�=| G(P2, P�
�M1

) | because |F | �= |F \ {M1}|.
Therefore, Remark 5.4 (1) implies that the order P2 is neither isomorphic to P1 nor
isomorphic to P�

1 . Thus, P2 and P1 are not isomorphic up to duality, and hence, at
least one of them is not isomorphic up to duality to P . This contradicts the fact that
P is reconstructible up to duality by its comparability graph. ��
Lemma 5.7 Given an order P on a set V with |V | ≥ 2, the following assertions are
equivalent.

(1) The order P belongs to H1.
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(2) The module V is the only non-self-dual module of P.
(3) The order P satisfies only one of the following two conditions:

(a) The order P is non-self-dual with a prime frame, and for each element M of
G(P), the order P�M is a member of H0.

(b) The order P is the direct sum of two non-isomorphic members of H0,p ∪H0,a.

Proof (1) ⇒ (2). This follows from Corollary 5.2 (2).
(2) ⇒ (3). Assume that V is the only non-self-dual module of P . Then Lemma 3.1

(7) implies that every module of P�M is self-dual, for each member M of G(P). Thus,
Corollary 5.2 (1) implies that P�M ∈ H0, for each member M of G(P). Since a
disjoint sum of self-dual orders is self-dual, the frame P/G(P) is not an antichain.
If this frame is prime, then P satisfies condition (a). In the sequel, we assume that
the frame P/G(P) of P is a chain. If G(P) is a pair {V1, V2}, then, by Remark 3.5,
the orders P�V1 and P�V2 are elements of H0,p ∪ H0,a , and they are non-isomorphic
because P is non-self-dual. Therefore, if | G(P) |= 2, then P satisfies condition (b).

Now, we proceed by contradiction to show that | G(P) |= 2. Suppose that G(P) =
{V1, V2, ..., Vk}, where k ≥ 3, and the frame P/G(P) is the chain.

V1 < V2 < · · · < Vk . If there is an i ∈ {2, ..., k} such that P�Vi is not isomorphic to
P�V1 , then let i0 be the smallest such integer. By Remark 3.4 (3), Vi0−1∪Vi0 is a proper
module of P , and P�Vi0−1∪Vi0

is non-self-dual because P�Vi0−1
∼= P�

�Vi0−1
∼= P�V1 and

P�Vi0
∼= P�

�Vi0
� P�V1 . This contradicts that V is the only non-self-dual module of

P . Hence, P�Vj
∼= P�V1 for each j ∈ {2, ..., k}. This contradicts the fact that P is not

self-dual.
(3) ⇒ (1). Assume that P satisfies condition (a) or condition (b). Using

Remark 3.4, we can easily see that V is the only non-self-dual module of P .
Now, let P ′ be an order on V such that Comp(P ′) = Comp(P).
By Corollary 3.3 (1), G(P ′) = G(P). Thus, P ′/G(P) = P/G(P) or P ′/G(P) =

P�/G(P), by Corollary 3.3 (2), when P satisfies condition (a), and because
| G(P) |= 2when P satisfies condition (b). On the other hand, P ′

�M
∼= P�M ∼= P�

�M
for each M ∈ G(P), since P�M ∈ H0. It follows that P ′ ∼= P when P ′/G(P) =
P/G(P) and P ′ ∼= P� when P ′/G(P) = P�/G(P). Thus, P ′ is isomorphic up to
duality to P . Hence, P is reconstructible up to duality by its comparability graph, and
therefore, P ∈ H1. ��
Lemma 5.8 Let P be an order on a set V , with |V | ≥ 2, such that the frame of P
is a chain. If P is reconstructible up to duality by its comparability graph, then the
following assertions hold.

(1) P�M ∈ H0,p ∪ H0,a, for every member M of G(P).
(2) If | G(P) |≥ 3, then P�M ∼= P�N , for any members M, N of G(P).
(3) P ∈ H0 ∪ H1.

Proof (1) Consider a member M of G(P).
First, we prove that the order P�M is self-dual. To the contrary, suppose that there

is a non-self-dual member M of G(P). Then, by lemmas 5.5, 5.6 and 5.1 , the order
P�Y is a member of H0, for every member Y of G(P) \ {M}. Consider two orders
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P1 and P2 on the set V such that G(P1) = G(P2) = G(P), the frames of P1 and
P2 are chains, M is the first element of the frame P1/G(P) and is the last element
of the frame P2/G(P), and P1�N = P2�N = P�N , for each member N of G(P).
Clearly, Comp(P1) = Comp(P2) = Comp(P). The order P2 is not isomorphic to P1
because the first element of P2/G(P) is self-dual while the first element of P1/G(P)

is non-self-dual. Moreover, M is the first element of P1/G(P) and of P�
2 /G(P), and

P�
2�M

� P1�M because P�
2�M

= P�
1�M

= P�
�M and P�M is non-self-dual. So P�

2 is not
isomorphic to P1. Hence, P1 and P2 are not isomorphic up to duality, and therefore,
at least one of them is not isomorphic up to duality to P . This contradicts the fact that
P is reconstructible up to duality by its comparability graph.

Second, since the order P�M is self-dual, Lemma 5.5 and Lemma 5.1 imply that
P�M ∈ H0, and hence, P�M ∈ H0,p ∪ H0,a by Remark 3.5.

(2) Assume that | G(P) |≥ 3. To the contrary, suppose that there are two members
M1, M2 of G(P) such that the suborders P�M1 and P�M2 are non-isomorphic. Consider
a member M3 of G(P) \ {M1, M2}. Notice that the orders P�M1 , P�M2 , and P�M3 are
self-dual because they are members of H0,p ∪ H0,a by the first assertion.

Consider three orders P1, P2, and P3 on the set V such that G(P1) = G(P2) =
G(P3) = G(P), the frames of P1, P2, and P3 are chains, M1 is the first element of each
of the frames P1/G(P) and P2/G(P), M2 is the last element of the frame P1/G(P)

and is the first element of the frame P3/G(P), M3 is the last element of each of the
frames P2/G(P) and P3/G(P), and P1�N = P2�N = P3�N = P�N , for each member
N of G(P). Clearly, Comp(P1) = Comp(P2) = Comp(P3) = Comp(P).

Case 1. P�M3 is neither isomorphic to P�M1 nor isomorphic to P�M2 . Then, using
Remark 5.4 (3), we obtain that the orders P1 and P2 are not isomorphic up to duality.
Therefore, at least one of them is not isomorphic up to duality to P .

Case 2. P�M3
∼= P�M1 . Again by Remark 5.4 (3), we obtain that the orders P1 and

P2 are not isomorphic up to duality. Therefore, at least one of them is not isomorphic
up to duality to P .

Case 3. P�M3
∼= P�M2 . Thus, Remark 5.4 (3) implies that the orders P1 and P3 are

not isomorphic up to duality. Therefore, at least one of them is not isomorphic up to
duality to P .

In the three cases, we get a contradiction with the fact that P is reconstructible up
to duality by its comparability graph.

(3) First, assume that P�M ∼= P�N , for any members M, N of G(P). Since a
direct sum of isomorphic self-dual orders is self-dual, the order P is self-dual. Hence,
P ∈ H0 by Lemma 5.1.

Second, assume that there are twomembers M1, M2 ofG(P) such that the suborders
P�M1 and P�M2 are non-isomorphic. The second assertion implies that | G(P) |= 2,
and hence, the order P is the direct sum of two non-isomorphic members of H0,p ∪
H0,a . Thus, P ∈ H1 by Lemma 5.7. ��
Lemma 5.9 Given an order P on a set V , with |V | ≥ 2, such that the frame of P is a
chain, the following assertions hold.

(1) P ∈ H0 if and only if P is the direct sum of at least two isomorphic members of
H0,p ∪ H0,a.

123



2308 M. Alzohairi et al.

(2) P ∈ H1 if and only if the order P is the direct sum of two non-isomorphic members
of H0,p ∪ H0,a.

Proof (1) First, we prove that if P ∈ H0, then P is the direct sum of at least two
isomorphic members of H0,p ∪ H0,a . To the contrary, suppose that P ∈ H0 and
G(P) has two non-isomorphic members. Then there are two consecutive vertices M
and N of the chain P/G(P) such that the orders P�M and P�N are not isomorphic.
Thus, M ∪ N is a non-self-dual module of P; which contradicts the fact that P ∈ H0.

Second, assume that P is the direct sum of at least two isomorphic members of
H0,p ∪ H0,a . Thus, P has a modular partitionQ = {V1, ..., Vk}, with k ≥ 2, such that
P�V1 ∈ H0,p ∪ H0,a , P�Vi

∼= P�V1 for each i ∈ {2, ..., k}, and the quotient P/Q is the
chain: V1 < · · · < Vk . Since P�Vi

∼= P�V1 for each i ∈ {2, ..., k}, usingRemark 3.5, we
see that Q is the largest modular partition of P for which the corresponding quotient
is a chain. Therefore, Remark 3.4 (5) implies that Q = G(P).

Since P�Vi
∼= P�V1 for each i ∈ {2, ..., k}, the order P is self-dual. Now, consider

a proper module M of P . By Remark 3.4 (3), either M is a module of some P�Vi or
there are 1 ≤ i1 ≤ i2 ≤ k such that M = ∪

i1≤i≤i2
Vi . In both cases, the order P�M is

self-dual.
Therefore, every module of P is self-dual, and hence, P ∈ H0.
(2) Since the frame of P is a chain, this second assertion follows immediately from

Lemma 5.7. ��
We are now ready to present a proof of the main result.

Proof of Theorem 2.5 The first assertion is the first one of Corollary 5.2. The second
assertion is an immediate consequence of Lemma 5.7.

We now proceed to prove the last assertion. Let k be an integer with k ≥ 2.
Denote by C1 the set of orders obtained from some good self-dual order by dilating

a good vertex by a member of Hk−1.
For each integer q with 2 ≤ q ≤ log2(k) + 1, denote by Cq the set of orders which

are disjoint sums of q − 1 members of H0,c ∪ H0,p and one connected member of
Hk−2q−1+1.

We will show that Hk = ∪
1≤q≤log2(k)+1

Cq .

First, we consider a member P of C1, and let P1 be a good self-dual order, x
be a good vertex of P1, and fx be a good isomorphism associated with x , and
assume that P is obtained from P1 by dilating the vertex x by a member R of
Hk−1. Put Q = (G(P1) \ {{x}}) ∪ {V (R)}, where V (R) denotes the set of ver-
tices of R. Clearly, Q is a modular partition of the order P for which the quotient
P/ Q is prime because it is isomorphic to the frame P1/G(P1) of P1. Thus, by
Remark 3.4 (2), Q = G(P). Let P ′ be an order on the set V (P) of vertices of
P such that Comp(P ′) = Comp(P). Then, by Corollary 3.3, G(P ′) = G(P), and
either P ′/G(P) = P/G(P) or P ′/G(P) = P�/G(P). For every element M of
G(P1) \ {{x}} = G(P) \ {V (R)}, the orders P ′

�M , P�M , P�
�M , P�

� fx (M)
and P ′

� fx (M)

are isomorphic because P�M ∈ H0. Moreover, since R ∈ Hk−1, R is reconstructible
up to duality by its comparability graph and in particular, P ′

�V (R)
is isomorphic up to

duality to R. By interchanging P ′ and (P ′)�, if necessary, we may assume that P ′
�V (R)
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is isomorphic to R. Let ϕ be an isomorphism from P�V (R) onto P ′
�V (R)

. Clearly, the
orders P ′ and P are isomorphic when P ′/G(P) = P/G(P). We now assume that
P ′/G(P) = P�/G(P). For each element M of G(P) \ {V (R)} = G(P1) \ {{x}}, we
consider an isomorphism ϕM from P�M onto P�

� fx (M)
. We define a permutation g of

V (P) as follows: g(t) = ϕ(t) if t ∈ V (R), and g(t) = ϕM (t) if t ∈ V (P1)\{x}, where
M is the element of G(P1) containing t . It is easy to verify that g is an isomorphism
from P onto P ′. Hence, P is reconstructible up to duality by its comparability graph.
Moreover, the second assertion of Corollary 5.2 implies that V (R) is a non-self-dual
module of P because R ∈ Hk−1 and k ≥ 2. It follows that P /∈ H0, and hence,
Lemma 5.1 implies that P is not self-dual. By Remark 3.4 (6), the set of non-self-dual
modules of P is the union of {V (P)} and the set of non-self-dual modules of R. Since
R ∈ Hk−1, P has exactly k non-self-dual modules. So P ∈ Hk , and hence, C1 ⊆ Hk .

Next, we consider an integer q with 2 ≤ q ≤ log2(k) + 1, and a member P of Cq ,
which is a disjoint sum of q orders R1, R2, ..., Rq , where R1 is a connected member
of Hk−2q−1+1, and for each 2 ≤ i ≤ q, Ri is a member of H0,c ∪ H0,p.

By Remark 3.4 (7), the orders R2, ..., Rq are connected, and G(P) = {V (Ri ) :
1 ≤ i ≤ q}, where V (Ri ) is the set of vertices of Ri . By Remark 3.4 (4), the set of
non-self-dual modules of P is the union of the set of the unions ∪

i∈A
V (Ri ), where A is

a subset of {1, ..., q} containing 1 with | A |≥ 2, and the set of non-self-dual modules
of R1. Thus, P has exactly (k −2q−1 +1)+ (−1+2q−1) = k non-self-dual modules.
On the other hand, given an order P ′ on V (P) such that Comp(P ′) = Comp(P),
it follows from Corollary 3.3 (1) that G(P ′) = G(P) = {V (Ri ) : 1 ≤ i ≤ q}.
Since R1 is reconstructible up to duality by its comparability graph and Ri ∈ H0
for each 2 ≤ i ≤ q, P ′

�V (R1)
is isomorphic up to duality to P�V (R1) = R1, and

P ′
�V (Ri )

∼= P�V (Ri ) for each 2 ≤ i ≤ q. Thus, P ′ ∼= P when P ′
�V (R1)

∼= P�V (R1),
and P ′ ∼= P� otherwise. Thus, P ′ is isomorphic up to duality to P . Hence, P is
reconstructible up to duality by its comparability graph. Since P has exactly k non-
self-dual modules, P ∈ Hk . Therefore, ∪

2≤q≤log2(k)+1
Cq ⊆ Hk .

Conversely, we now prove that Hk ⊆ ∪
1≤q≤log2(k)+1

Cq . Let P be a member of Hk .

By Corollary 5.2 (2), the order P is not self-dual. By Theorem 1.2 and Lemma 5.8,
we discuss the following two cases according to the frame Q of P . The frame Q of
P is a prime order or an antichain.

First, we assume that the frame Q = P/G(P) is a prime order. By Lemma 5.6,
there is at most one non-self-dual member of G(P). If M ∈ G(P) is self-dual, then
by Lemma 5.5 and Lemma 5.1, P�M ∈ H0. So if G(P) has no non-self-dual member,
then V (P) is the unique non-self-dual module of P; which contradicts the fact that
P ∈ Hk and k ≥ 2. So, G(P) has a unique non-self-dual member X . Let x ∈ X ,
and let P1 be the order P�((V (P)\X)∪{x}). Clearly, G(P1) = (G(P) \ {X}) ∪ {{x}},
and the frame P1/G(P1) of P1 is a prime order because it is isomorphic to Q. Thus,
P1 is an order with a prime frame such that {x} ∈ G(P1) and the order P�M is a
member ofH0, for each M ∈ G(P1) \ {{x}}. We consider the order P2 = I nv(X , P).
By Theorem 1.3, Comp(P2) = Comp(P). Thus, P2 is isomorphic up to duality to P
because P is reconstructible up to duality by its comparability graph.On the other hand,
X is the unique non-self-dual member of G(P2) = G(P), and P2�X � P�X because
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P�X is non-self-dual. It follows that P2 � P , and hence, there is an isomorphism
g from P onto P�

2 such that g(X) = X . Moreover, for each M ∈ G(P) \ {X}, the
orders P�M , P�

�M , P2�g(M)
, and P�

2�g(M)
are isomorphic because P�M ∈ H0. Clearly, g

induces an isomorphism f from the frame Q1 = P1/G(P1) of P1 onto Q�
1 such that

f ({x}) = {x}, and for every M ∈ G(P1) \ {{x}}, the orders P1�M and P1� f (M)
are two

isomorphic members of H0 because P1�M = P�M and P1� f (M)
= P2�g(M)

. Thus, the
order P1 is a good self-dual order, and P is obtained from P1 by dilating its good vertex
x by P�X . On the other hand, V (P) is a non-self-dual module of P , and for every
M ∈ G(P)\ {X}, P�M ∈ H0. Thus, the non-self-dual modules of P are V (P) and the
non-self-dual modules of P�X . Moreover, P ∈ Hk , hence P�X ∈ Hk−1. Therefore,
the order P is obtained from a good self-dual order by dilating a good vertex x by a
member of Hk−1 when the frame Q = P/G(P) of P is a prime order.

Next, we assume that the frame Q is an antichain. By Lemma 5.6, there is at most
one non-self-dual member of G(P). The module V (P) is a non-self-dual module of
P , and a disjoint sum of self-dual orders is a self-dual order. Hence, G(P) has exactly
one element X such that P�X is not self-dual.

Let G(P) = {X1, ..., Xq}, where X1 = X . By Remark 3.4 (4), the modules of
P are the modules of the PXi ’s and the unions of some Xi ’s. By Lemma 5.1 and
Lemma 5.5, for each i ∈ {2, ..., q}, P�Xi ∈ H0. Since a disjoint sum of a finite set
of orders, which contains exactly one non-self-dual member, is a non-self-dual order,
the non-self-dual modules of P are those of P�X and the unions ∪

i∈A
Xi , where A is a

subset of {1, ..., q} containing 1 with | A |≥ 2. Hence, the number of non-self-dual
modules of P is n1−1+2q−1, where n1 is the number of non-self-dual modules of the
order P�X . Thus, n1−1+2q−1 = k, and hence, P�X ∈ Hk−2q−1+1, because it follows
from Lemma 5.5 that P�X is reconstructible up to duality by its comparability graph.
Moreover, n1 ≥ 1, q ≥ 2, and n1 −1+2q−1 = k imply that 2 ≤ q ≤ log2(k)+1. By
Remark 3.5, for i ∈ {2, ..., q}, the fact that P�Xi ∈ H0 implies that P�Xi ∈ H0,c∪H0,p.
On the other hand, the order P�X1 is connected by Remarks 3.4 and 3.5 . Therefore,
the order P is a disjoint sum of q − 1 members of H0,c ∪ H0,p and one connected
member of Hk−2q−1+1 when the frame of P is an antichain. ��

6 RelationWith the Reconstruction Problems of Fraïssé and
Hagendorf

Recall the following notions used in reconstruction.
Let P be an order on a set V .
An order is hemimorphic to P if it is isomorphic to P or to its dual P�.
For anorder P ′ onV and apositive integer k, P ′ is (≤ k)-hemimorphic (respectively,

(≤ k)-isomorphic) to P if for each subset X of V with at most k elements, the
induced orders P�X and P ′

�X are hemimorphic (respectively, isomorphic). The order
P is (≤ k)-half-reconstructible (respectively, (≤ k)-reconstructible) if each order
which is (≤ k)-hemimorphic (respectively, (≤ k)-isomorphic) to P is hemimorphic
(respectively, isomorphic) to P .
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The problem of (≤ k)-reconstruction (respectively, (≤ k)-half-reconstruction) of
binary relations was introduced by Fraïssé [16] (respectively, Hagendorf [20]). For
the studies on these two problems, see [1,4–6,15,19,20,22].

Clearly, two orders on the same set of vertices are (≤ 2)-hemimorphic if and only
if they are (≤ 2)-isomorphic if and only if they have the same comparability graph.
Hence, an order P is reconstructible (respectively, reconstructible up to duality) by
its comparability graph if and only if P is (≤ 2)-reconstructible (respectively, (≤ 2)-
half-reconstructible).

Therefore, Proposition 2.4 characterizes the (≤ 2)-reconstructible orders, and The-
orem 2.5 describes the (≤ 2)-half-reconstructible orders.

7 An Open Problem

Consider the following problem which is proposed by one of the referees.

Problem 7.1 Characterize the comparability graphs G with the property that all the
transitive orientations of G are isomorphic up to duality.

For the study of this problem, the following lemma can be used.

Lemma 7.2 Given a comparability graph G, the following assertions are equivalent.

(1) All the transitive orientations of G are isomorphic up to duality.
(2) Each transitive orientation of G is an element of the union ∪

n≥0
Hn.

(3) There is a transitive orientation P of G such that P ∈ ∪
n≥0

Hn.

Proof (1) ⇒ (2). Assume that all the transitive orientations of G are isomorphic up
to duality, and consider a transitive orientation P of G. Thus, Comp(P) = G, and
each order P

′
on V (P) which has the same comparability graph as P is isomorphic

up to duality to P because P
′
is a transitive orientation of G. Therefore, the order P

is reconstructible up to duality by its comparability graph, and hence, P ∈ ∪
n≥0

Hn .

(2) ⇒ (3). It is immediate.
(3) ⇒ (1).Assume that there is a transitive orientation P ofG such that P ∈ ∪

n≥0
Hn ,

and consider a transitive orientation P
′
of G. Thus, Comp(P) = Comp(P

′
) = G.

On the other hand, since P ∈ ∪
n≥0

Hn , the order P is reconstructible up to duality by

its comparability graph. It follows that P
′
is isomorphic up to duality to P . Therefore,

all the transitive orientations of G are isomorphic up to duality. ��
By Lemma 7.2, the solutions of Problem 7.1 are the comparability graphs of the

elements of the union ∪
n≥0

Hn . On the other hand, Theorem 2.5 does not give a simple

description of these graphs. Thus, the description of the solutions of Problem 7.1
remains an open problem.
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