FINAL EXAMINATION, SEMESTER I, 2022

DeEpPT. MATH., COLLEGE OF SCIENCE, KSU
MaTH: 107 FurLL MARK: 40 TiME: 3 HOURS

Q1. [Marks: 3+3+3=9]

(a) Find the values of A for which the following system of equations has a unique solution:

2x1 4+ 310 + r3 = —1
1+ 2x9+ x3=0
321 + a9 + (A2 —6)z3 = A — 3.

(b) Let A be a square matrix with det(4) =1 and

adj(A)

o O =
[ =]
s}

Compute A~! and deduce A.

(c¢) By using Cramer’s Rule solve the system of equations:

—-p+qg—2r=1
p—q+9r=-2

5¢ +r =4.

Q2. [Marks: 3+3+3=9]

(a) Let u=(1,2,-1), v=(0,1,-1) and w = (2,3,1). (i) Find the angle between u and v.

(ii) Find the component of u + 2v along w.

(b) Find an equation of the plane that contains the point P(4,—3,0) and the line: = = ¢t + 5,
y=2t—1,z=—t+T7.

(c) Identify the surface z — y? — 22 = 0, give traces, and sketch.

Q3. [Mark: 6+3+3=12]

(a) The position vector of a moving point at time ¢ is r(t) = (4cost,9sint, t). Find the tangential
and normal components of acceleration, and curvature at time ¢.

2

(b) Show that lim, (0,0 438° o5 not exist.

z24y?

(c) The temperature T at (:z:,y)yis given by T = 5(x% + y?)2, where T is in degrees and x and y
are in centimeters. Use differential to approximate the temperature difference between points (1,1)
and (1.01,0.98).

Q4. [Marks: 3+3+4=10]

(a) Use partial derivative to find 22 if (22 4+ 1)2° — y?2% + ayz = 3.

(b) Let f(x,y,z) = xyz. Find the directional derivative of f at the point A(1,1,1) in the direction
of the vector a =1+ j + k.

(c) Let g(x,y) = 22 + y* + 2y* + 9. Find the local extrema and saddle point if any.
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