\qquad

Note: Check the total number of pages are Six (6).

 (15 Multiple choice questions and Two (2) Full questions)The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d		a	b	c	b	c	a	c	a	b

Q. No.	11	12	13	14	15
a,b,c,d	a	a	c	c	b

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

Question 1: The number of bisections required to solve the equation $x^{3}-2 x=1$ in $[1.5,2]$ accurate to within 10^{-4} is:
(a) 11
(b) 13
(c) 15
(d) None of these

Question 2: Given $x_{0}=0$ and $x_{1}=0.1$, then the next approximation x_{2} of the solution of the reciprocal of 5 using the Secant method is:
(a) 0.175
(b) 0.15
(c) 0.1
(d) None of these

Question 3: The order of convergence of the Newton's method for $f(x)=\tan x$ at the root $\alpha=\pi$ is:
(a) 3
(b) 1
(c) 2
(d) None of these

Question 4: The l_{∞}-norm of the inverse of the Jacobian matrix of the nonlinear system $x^{2}+y^{2}=1, x y=1$ at the point $(1,0)$ is:
(a) 0.5
(b) 2
(c) 1
(d) None of these

Question 5: In the LU factorization with Doolittles method of the matrix $A=\left(\begin{array}{cc}1 & -1 \\ \alpha & 1\end{array}\right)$, the matrix U is singular if α is equal to:
(a) -1
(b) 1
(c) ± 1
(d) None of these

Question 6: The first approximation for solving linear system $A \mathrm{x}=[1,3]^{T}$ using Jacobi iterative method wit $A=\left(\begin{array}{rr}-4 & 5 \\ 1 & 2\end{array}\right)$ and $\mathbf{x}^{(0)}=[0.5,0.5]^{T}$ is:
(a) $[1.375,1.315]^{T}$
(b) $[0.375,1.250]^{T}$
(c) $[1.375,1.250]^{T}$
(d) None of these

Question 7: Solving linear system $A \mathbf{x}=[4,5]^{T}$, with $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, by Gauss-Seidel iterative method, if $\left\|\mathrm{x}^{(1)}-\mathrm{x}^{(0)}\right\|=0.75$, then the number of iterations needed to get an accuracy within 10^{-2} is:
(a) 6
(b) 8
(c) 10
(d) None of these

Question 8: If $\hat{x}=[1.01,0.99]^{T}$ is an approximate solution for the system of two linear equations $2 x-y=1$ and $x+y=2$, then the error bound for the relative error is:
(a) 0.025
(b) 0.035
(c) 0.045
(d) None of these

Question 9: Using data points: $(0,-2),(0.1,-1),(0.15,1),(0.2,2),(0.3,3)$, the best approximate value of $f(0.25)$ by a linear Lagrange polynomial is:
(a) 2.5
(b) 1.5
(c) 3.5
(d) None of these

Question 10: If $f(x)=x^{2} e^{x}$, then $f[1,1,2]$ equals to:
(a) $4 e^{2}-4 e$
(b) $4 e^{2}+4 e$
(c) $4 e^{2}-3 e$
(d) None of these

Question 11: Using data points: $(0,-2),(0.1,-1),(0.15,1),(0.2,2),(0.3,3)$, the best approximation of $f^{\prime}(0.25)$ using 3-point difference formula is:
(a) 15.0
(b) 20.0
(c) 10.0
(d) None of these

Question 12: Using data points: $(0,-2),(0.1,-1),(0.15,1),(0.2,2),(0.3,3)$, then the best approximation of $f^{\prime \prime}(0.15)$ using 3-point difference formula is:
(a) -44.44
(b) -400.00
(c) -3.33
(d) None of these

Question 13: Using data points: $(0,-2),(0.1,-1),(0.15,1),(0.2,2),(0.3,3)$, the best approximate value of the integral $\int_{0}^{0.3} f(x) d x$, using the composite Trapezoidal
rule is: rule is:
(a) 0.1
(b) 0.15
(c) 0.25
(d) None of these

Question 14: If $f(0)=3, f(1)=\frac{\alpha}{2}, f(2)=\alpha$, and the Simpson's rule for $\int_{0}^{2} f(x) d x=4$,
then the value of α is:
(a) 3.0
(b) 2.0
(c) 1.5
(d) None of these

Question 15: Given $x y^{\prime}+y=1, y(1)=0$, the approximate value of $y(2)$ using Euler's method
when $n=1$ is:
(a) 1.0
(b) 1.5
(c) 2.0
(d) None of these

Question 16: Use the following table to find the best approximation of $f(0.6)$ by using quadratic Lagrange interpolating polynomial for equally spaced data points:

$$
\begin{array}{c|ccccccc}
x & 0.15 & 0.2 & 0.3 & 0.5 & 0.55 & 0.8 & 1 \\
\hline f(x) & -0.0427 & -0.0644 & -0.1084 & -0.1733 & -0.1808 & -0.1428 & 0.0000
\end{array}
$$

The function tabulated is $f(x)=x^{2} \ln x$. Compute the absolute error and an error bound (using error bound formula for equally spaced data points) for the approximation.

Solution. Given $x=0.6$, so, the best three points for the quadratic Lagrange interpolating polynomial for equally spaced data points are, $x_{0}=0.3, x_{1}=0.55$ and $x_{2}=0.8$ with $h=0.25$. Consider the quadratic Lagrange interpolating polynomial as

$$
\begin{gather*}
f(x)=p_{2}(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)+L_{2}(x) f\left(x_{2}\right) \tag{1}\\
f(0.6) \approx p_{2}(0.6)=L_{0}(0.6)(-0.1084)+L_{1}(0.6)(-0.1808)+L_{2}(0.6)(-0.1428) \tag{2}
\end{gather*}
$$

The Lagrange coefficients can be calculate as follows:

$$
\begin{aligned}
& L_{0}(0.6)=\frac{(0.6-0.55)(0.6-0.8)}{(0.3-0.55)(0.3-0.8)}=-2 / 25=-0.08 \\
& L_{1}(0.6)=\frac{(0.6-0.3)(0.6-0.8)}{(0.55-0.3)(0.55-0.8)}=24 / 25=0.96 \\
& L_{2}(0.6)=\frac{(0.6-0.3)(0.6-0.55)}{(0.8-0.3)(0.8-0.55)}=3 / 25=0.12 .
\end{aligned}
$$

Putting these values of the Lagrange coefficients in (2), we have

$$
f(0.4) \approx p_{2}(0.4)=(-0.08)(-0.1084)+(0.96)(-0.1808)+(0.12)(-0.1428)=-0.1821
$$

which is the required approximation of the given exact solution $0.36 \ln 0.6 \approx-0.1839$. The desired absolute error is

$$
\left|f(0.6)-p_{2}(0.6)\right|=|0.36 \ln 0.6-(-0.1821)|=|-0.1839+0.1821|=0.0018
$$

To compute an error bound for the approximation of the given function in the interval $[0.3,0.8]$, we use the following quadratic error formula

$$
\left|f(x)-p_{2}(x)\right| \leq \frac{M h^{3}}{9 \sqrt{3}}
$$

As

$$
M=\max _{0.3 \leq x \leq 0.8}\left|f^{(3)}(x)\right|
$$

and the first three derivatives are

$$
\begin{gathered}
f^{\prime}(x)=2 x \ln x+x, \quad f^{\prime \prime}(x)=2 \ln x+3, \quad f^{(3)}(x)=\frac{2}{x} \\
M=\max _{0.3 \leq x \leq 0.8}\left|\frac{2}{x}\right|=20 / 3=6.6667
\end{gathered}
$$

Hence

$$
\left|f(0.6)-p_{2}(0.6)\right| \leq \frac{(6.6667)(0.25)^{3}}{9 \sqrt{(3)}}=0.0067
$$

which is desired error bound.

Question 17: Use best integration rule to find the absolute error for the approximation of $\int_{0}^{1.2} f(x) d x$ by using the following set of data points:

x	0.0	0.1	0.21	0.3	0.42	0.5	0.6	0.7	0.8	0.9	1.0	1.1
$f(x)$	1.0000	1.0950	1.1880	1.2553	1.3331	1.3776	1.4253	1.4648	1.4967	1.5216	1.5403	1.5536

The function tabulated is $f(x)=x+\cos x$. How many points approximate the given integral to within accuracy of 10^{-6} ?

Solution. We need only the equally spaced data points, which are as follows

$$
x_{0}=0, x_{1}=0.3, x_{2}=0.6, x_{3}=0.9, x_{4}=1.2
$$

gives, $h=0.3$ and $n=(1.2-0) / 0.3=4$, which means the best rule is Simpson's rule. Thus to select the following set of data points for Simpson's rule as

$$
\begin{array}{l|lllll}
x & 0.0 & 0.3 & 0.6 & 0.9 & 1.2 \\
\hline f(x) & 1.0000 & 1.2553 & 1.4253 & 1.5216 & 1.5624
\end{array}
$$

The composite Simpson's rule for five points can be written as

$$
\begin{gathered}
\int_{0}^{1.2} f(x) d x \approx S_{4}(f)=\frac{h}{3}\left[f\left(x_{0}\right)+4\left(f\left(x_{1}\right)+f\left(x_{3}\right)\right)+2 f\left(x_{2}\right)+f\left(x_{4}\right)\right] \\
\int_{0}^{1.2} f(x) d x \approx 0.1[1.0000+4(1.2553+1.5216)+2(1.4253)+1.5624]=1.6521
\end{gathered}
$$

We can easily computed the exact value of the given integral as

$$
I(f)=\int_{0}^{1.2}(x+\cos x) d x=\left.\left(\frac{x^{2}}{2}+\sin x\right)\right|_{0} ^{1.2}=1.6520 .
$$

Thus the absolute error $|E|$ in our approximation is given as

$$
|E|=\left|I(f)-S_{4}(f)\right|=|1.6520-1.6521|=0.0001 .
$$

The first four derivatives of the function $f(x)=x+\cos x$ can be obtain as

$$
f^{\prime}(x)=1-\sin x, \quad f^{\prime \prime}(x)=-\cos x, \quad f^{\prime \prime \prime}(x)=\sin x, \quad f^{(4)}(x)=\cos x .
$$

Since $\eta(x)$ is unknown point in $(0,1.2)$, therefore, the bound $\left|f^{(4)}\right|$ on $[0,1.2]$ is

$$
M=\max _{0 \leq x \leq 1.2}\left|f^{(4)}\right|=\max _{0 \leq x \leq 1.2}|\cos x|=1.0,
$$

at $x=0$. To find the minimum subintervals for the given accuracy, we use error bound formula of Simpson's rule

$$
\left|E_{S_{n}}(f)\right| \leq \frac{\left|-(b-a)^{5}\right|}{180 n^{4}} M \leq 10^{-6},
$$

where $M=\max _{0 \leq x \leq 1.2}\left|f^{(4)}(x)\right|=\max _{0 \leq x \leq 1.2}|\cos (x)|=1$, then solving for n, we obtain, $n \geq 10.8432$. Hence to get the required accuracy, we need 12 (even) subintervals which means $n+1=13$ points.

