King Saud University: Mathematics Department Math-254
Second Semester 1445 H Final Examination Solution
Maximum Marks $=40$
Time: 180 mins.

Name of the Student:- I.D. No.

Name of the Teacher:
Section No.
Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a,b,c,d	a	c	c	b	a	b	c	c	a	a	b	c	a	b	c

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

Question 1: If $f(x)=x e^{-x}$ and $x_{0}=4$, then the first approximation x_{1} by Newton's method is:
(a) 5.3333
(b) 4.3333
(c) 3.3333
(d) None of these

Question 2: Using the best iterative formula, the first approximation of the multiple root of the nonlinear equation $1-\cos x=0$, taking $x_{0}=0.1$ is:
(a) 0.0980
(b) 0.0890
(c) 0.0098
(d) None of these

Question 3: If the determinant of the Jacobian matrix of the system of nonlinear equations $x^{2}+\alpha y^{2}=1, x y=1$ at the point $(1,1)$ is -4 , then the value of α is:
(a) 3
(b) 2
(c) 1.5
(d) None of these

Question 4: If the matrix $A=\left(\begin{array}{ll}3 & 1 \\ 6 & 1\end{array}\right)$ is factored as $L U$ using Doolliitle's method, where L is a lower triangular matrix, and U is an upper triangular matrix, then the solution of the system $L \mathbf{y}=[-1,0]^{t}$ is :
(a) $[-1,2]^{t}$
(b) $[-1,-2]^{t}$
(c) $[-1,6]^{t}$
(d) None of these

Question 5: For the linear system $2 x+y=4, x+2 y=5$, then the l_{∞}-norm of the Gauss-Seidal iteration matrix T_{G} is equal to:
(a) 0.5
(b) 0.25
(c) 0.75
(d) None of these

Question 6: If $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0.5\end{array}\right)$ and l_{∞}-norm of the residual vector \mathbf{r} is 0.005 , then the error bound for the relative error in the solution of the linear system $A \mathbf{x}=[1,-0.5]^{T}$ is:
(a) 0.040
(b) 0.020
(c) 0.025
(d) None of these

Question 7: Using data points: $(0, f(0))$ and $(\pi, f(\pi))$. Then the approximation of the function $f(x)=2 \cos x$ at $\pi / 2$ by a linear Lagrange polynomial is:
(a) 0.0
(b) $\pi / 2$
(c) $\pi / 4$
(d) None of these

Question 8: Using data points: $(0,1),(1,2),(2,3)$, if $L_{0}(1.5)=-0.125$ and $L_{2}(1.5)=0.375$, then the approximate value of $f(1.5)$ by a quadratic Lagrange polynomial is:
(a) 2.5
(b) 1.5
(c) 3.5
(d) None of these

Question 9: If $f(x)=\frac{3}{x}$ and $f[1,1,1,2]=\alpha$, then α is equal to:
(a) -1.5
(b) 1.5
(c) -4.5
(d) None of these

Question 10: Let $f(x)=x^{3}$ defined on [0.2, 0.3]. Then absolute error using the Two-point difference formula for the approximation of $f^{\prime}(0.2)$ is:
(a) 0.07
(b) 0.12
(c) 0.19
(d) None of these

Question 11: If $f^{\prime \prime}(x)=x^{4} f(x)$ and $f(0)=1, f(0.5)=\alpha, f(0.7)=1.75, f(1)=2$. Then using 3 -point central difference formula for $f^{\prime \prime}(x)$, the value of α is:
(a) 1.4884
(b) 1.9999
(c) 1.8484
(d) None of these

Question 12: If $f(1)=0.5, f(1.5)=\alpha, f(1.8)=1.5, f(2)=2.5, f(2.5)=3$ and using the best integration rule the value of $\int_{1}^{2.5} f(x) d x=3$, then the value of α is:
(a) 1.75
(b) 1.5
(c) 2.25
(d) None of these

Question 13: If $\int_{1}^{2} \frac{1}{x+1} d x=0.4055$, then using simple Simpson's rule, the absolute error in the approximation is:
(a) 0.0001
(b) 0.0112
(c) 0.0025
(d) None of these

Question 14: For the initial value problem, $y^{\prime}+x^{2}=y+1, y(0)=0.5, n=1$, if the actual solution of the differential equation is $y(x)=(x+1)^{2}-0.5 e^{x}$, then the absolute error by using Euler's method for the approximation of $y(0.2)$ is:
(a) 0.0293
(b) 0.0392
(c) 0.0329
(d) None of these

Question 15: Given $4 y^{\prime}-y=0, y(0)=1$, the approximate value of $y(0.5)$ using Taylor's method of order two when $n=1$ is:
(a) 1.1328
(b) 1.1331
(c) 1.2839
(d) None of these

Question 16: Let $f(x)=\ln (x+2)$ and $x_{0}=0, x_{1}=0, x_{2}=1, x_{3}=1$, find the best approximation of $\ln (2.5)$ by using the cubic Newton's polynomial. Compute absolute error and the error bound.

Solution. Using $f(x)=\ln (x+2)$ and $x_{0}=0, x_{1}=0, x_{2}=1, x_{3}=1$, and $x=0.5$, the cubic Newton's interpolating polynomial has the following form
$p_{3}(x)=f\left[x_{0}\right]+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.
which can be written as
$p_{3}(0.5)=f(0)+(0.5-0) f[0,0]+(0.5-0)(0.5-0) f[0,0,1]+(0.5-0)(0.5-0)(0.5-1) f[0,0,1,1]$,
Since $f^{\prime}(x)=\frac{1}{x+2}$, so we find the first, second and third-order divided differences as follows:

$$
\begin{gathered}
f[0,0]=\frac{f^{\prime}(0)}{1!}=f^{\prime}(0)=\frac{1}{0+2}=0.5 \\
f[0,0,1]=\frac{f[0,1]-f^{\prime}(0)}{1-0}=f(1)-f(0)-f^{\prime}(0)=1.0986-0.6932-0.5=-0.0946 \\
f[0,1,1]=\frac{f[1,1]-f[0,1]}{1-0}=f^{\prime}(1)-f(1)+f(0)=0.3333-1.0986+0.6932=-0.0721 \\
\quad f[0,0,1,1]=\frac{f[0,1,1]-f[0,0,1]}{1-0}=-0.0721+0.0946=0.0225 \\
\ln (2.5) \approx p_{3}(0.5)=\ln (2)+(0.5)(0.5)+(0.25)(-0.0946)+(-0.1250)(0.0225)=0.9167
\end{gathered}
$$

the required approximation of $\ln (2.5)$ and

$$
\left|f(0.5)-p_{3}(0.5)\right|=\left|\ln (2.5)-p_{3}(0.5)\right|=|0.9163-0.9167|=4.0 \times 10^{-4}
$$

the possible absolute error in the approximation.
Since the error bound for the cubic polynomial $p_{3}(x)$ is

$$
\left|f(0.5)-p_{3}(0.5)\right|=\frac{\left|f^{(4)}(\eta(x))\right|}{4!}|(0.5-0)(0.5-0)(0.5-1)(0.5-1)|
$$

Taking the first four derivatives of the given function,

$$
f^{\prime}(x)=\frac{1}{(x+2)}, \quad f^{\prime \prime}(x)=\frac{-1}{(x+2)^{2}}, \quad f^{\prime \prime \prime}(x)=\frac{2}{(x+2)^{3}}, \quad f^{(4)}(x)=\frac{-6}{(x+2)^{4}}
$$

and we obtain

$$
\left|f^{(4)}(\eta(x))\right|=\left|\frac{-6}{(\eta(x)+2)^{4}}\right|, \quad \text { for } \quad \eta(x) \in(0,1)
$$

Since the fourth derivative of the function is decreasing in the interval as

$$
\left|f^{(4)}(0)\right|=0.375 \quad \text { and } \quad\left|f^{(4)}(1)\right|=0.0741
$$

so $\left|f^{(4)}(\eta(x))\right| \leq \max _{0 \leq x \leq 1}\left|\frac{-6}{(x+2)^{4}}\right|=0.375$ and it gives

$$
\left|f(0.5)-p_{3}(0.5)\right| \leq \frac{(0.0625)(0.375)}{24}=9.7656 \times 10^{-4}
$$

which is the required error bound for the approximation $p_{3}(0.5)$.

Question 17: The function tabulated below is $f(x)=x \ln x+x$.

$$
\begin{array}{l|llllllll}
x & 0.9000 & 1.3000 & 1.5000 & 1.6000 & 1.9000 & 2.3000 & 2.5000 & 3.1000 \\
\hline f(x) & 0.8052 & 1.6411 & 2.1082 & 2.3520 & 3.1195 & 4.2157 & 4.7907 & 6.6073
\end{array}
$$

Find the approximation of $(\ln 1.9+2)$ using three-point formula for $f^{\prime}(x)$ for smaller value of h. Compute the absolute error and the number of subintervals required to obtain the approximate value of $(\ln 1.9+2)$ within the accuracy 10^{-2}.

Solution. Given $f(x)=x \ln x+x$ and $f^{\prime}(x)=\ln x+2$, gives $\mathbf{x}=1.9$. For the given data points we can use all three-points difference formulas with central difference at

$$
x_{0}=1.5, \quad \mathbf{x}_{\mathbf{1}}=1.9, \quad x_{2}=2.3, \quad \text { gives } \quad h=0.4
$$

for forward difference at

$$
\mathbf{x}_{\mathbf{0}}=1.9, \quad x_{1}=2.5, \quad x_{2}=3.1, \quad \text { gives } \quad h=0.6
$$

and for backward difference at

$$
x_{0}=1.3, \quad x_{1}=1.6, \quad \mathbf{x}_{\mathbf{2}}=\mathbf{1 . 9}, \quad \text { gives } \quad h=0.3
$$

So the value of $\mathbf{h}=\mathbf{0 . 3}$ for the backward difference formula is smaller than both the other formulas. Thus the best three-point formula for the smaller h in this case is the following backward difference formula

$$
f^{\prime}\left(x_{2}\right) \approx \frac{f\left(x_{2}-2 h\right)-4 f\left(x_{2}-h\right)+3 f\left(x_{2}\right)}{2 h}=D_{h} f\left(x_{2}\right)
$$

Thus using $x_{2}=1.9$ and $h=0.3$, gives $\quad x_{2}-h=1.6$, and $x_{2}-2 h=1.3$, we have

$$
\begin{gathered}
f^{\prime}(1.9) \approx \frac{f(1.3)-4 f(1.6)+3 f(1.9)}{2(0.3)} \\
f^{\prime}(1.9) \approx \frac{[(1.6411)-4(2.3520)+3(3.1195)]}{0.6}=2.6527
\end{gathered}
$$

Since the exact value of the derivative $f^{\prime}(1.9)$ is, 2.6419 , therefore, the absolute error $|E|$ can be computed as follows

$$
|E|=\left|f^{\prime}(1.9)-D_{h} f(1.9)\right|=|2.6419-2.6527|=0.0108
$$

The first three derivatives of the given function are as follows

$$
f^{\prime}(x)=\ln x+2, \quad f^{\prime \prime}(x)=\frac{1}{x}, \quad f^{\prime \prime}(x)=\frac{-1}{x^{2}}
$$

Thus

$$
M=\max _{1.3 \leq x \leq 1.9}\left|\frac{-1}{x^{2}}\right|=\frac{1}{(1.3)^{2}}=0.5917
$$

Since the error bound formula of backward difference formula is

$$
\left|E_{B}(f, h)\right| \leq \frac{h^{2}}{3} M
$$

and using the given accuracy required 10^{-2}, we have

$$
\frac{h^{2}}{3} M \leq 10^{-2}
$$

Then

$$
\begin{array}{rlrl}
\frac{h^{2}}{3}(0.5917) & \leq 10^{-2}, & \text { gives } & \\
\text { Since } & n=\sqrt{\frac{3 \times 10^{-2}}{0.5917}}=0.2252 . \\
0.2252 & =2.6643 & \text { and so } & n=3 .
\end{array}
$$

