King Saud University: Mathematics Department Math-254
First Semester 1445 H Final Examination Solution
Maximum Marks $=40$
Time: 180 mins.

Name of the Student:- I.D. No.

Name of the Teacher:- Section No.
Note: Check the total number of pages are Six (6). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q. 1 to Q. 15 : Marks: 2 for each one $(2 \times 15=30)$

Ps. : Mark $\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d$\}$ for the correct answer in the box.

Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d	c	b	a	b	c	a	c	b	b	a

Q. No.	11	12	13	14	15
a,b,c,d	c	b	c	b	a

Quest. No.	Marks Obtained	Marks for Questions
Q. 1 to Q. 15		30
Q. 16		5
Q. 17		5
Total		40

Question 1: If $x_{n+1}=\frac{a}{b-\cos \left(x_{n}\right)}, n \geq 0$, is the fixed-point iterative form of the nonlinear equation $\frac{2}{x}+\cos (x)-3=0$, then the value of the constants a and b are:
(a) $a=2, b=1$
(b) $a=3, b=2$
(c) $a=2, b=3$
(d) None of these

Question 2: The next iterative value of the root of $x^{3}=3 x-2$ using the secant method, if the initial guesses are -2.6 and -2.4 is:
(a) -2.2066
(b) -2.1066
(c) -2.3066
(d) None of these

Question 3: If the iterative scheme $x_{n+1}=x_{n}-k \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n \geq 0$, converges at least quadratic to a simple root α, than the value of k is:
(a) $\mathrm{k}=1$
(b) $\mathrm{k}=2$
(c) $\mathrm{k}=3$
(d) None of these

Question 4: The l_{∞}-norm of the inverse of the Jacobian matrix for the nonlinear system $x^{2}+y^{2}=4,2 x-y^{2}=0$ using $\left[x_{0}, y_{0}\right]^{t}=[1,1]^{t}$ is:
(a) 2
(b) 0.5
(c) 4
(d) None of these

Question 5: Let $A=\left[\begin{array}{cc}1.001 & 1.5 \\ 2 & 3\end{array}\right]$, then the determinant of a lower-triangular matrix L of the $\mathrm{LU}^{\text {factorization using Crouts method is: }}$
(a) 0.300
(b) 1.001
(c) 0.003
(d) None of these

Question 6: The $l_{\infty}-$ norm of the Jacobi iteration matrix of the following linear system $4 x_{1}-x_{2}+x_{3}=7,4 x_{1}-8 x_{2}+x_{3}=-21,-2 x_{1}+x_{2}+5 x_{3}=15$ is:
(a) 0.625
(b) 0.5
(c) 0.4
(d) None of these

Question 7: Using Gauss-Seidel method and starting with $\mathbf{x}^{(\mathbf{0})}=[1.200,0.467,1.033]^{t}$, then the first approximation of the solution for the following linear system is: $5 x_{1}+2 x_{2}-x_{3}=6, x_{1}+6 x_{2}-3 x_{3}=4,2 x_{1}+x_{2}+4 x_{3}=7$ is:
(a) $\mathbf{x}^{(\mathbf{1})}=\left(\begin{array}{l}1.024 \\ 1.006 \\ 0.987\end{array}\right)$
(b) $\mathbf{x}^{(\mathbf{1})}=\left(\begin{array}{l}0.897 \\ 0.950 \\ 1.019\end{array}\right)$
(c) $\mathbf{x}^{(\mathbf{1})}=\left(\begin{array}{l}1.220 \\ 0.980 \\ 0.895\end{array}\right)$
(d) None of these

Question 8: Let $A=\left[\begin{array}{cc}0 & \alpha \\ 1 & 1\end{array}\right]$ and $1<\alpha<2$. If the condition number $k(A)$ of the matrix A is 6 , then α equals to
(a) 0.8
(b) 0.5
(c) 0.2
(d) None of these

Question 9: Let $x_{0}=2, x_{1}=2.5, x_{2}=4$ and $x_{3}=5.5$. If the best approximation of $f(x)=\frac{1}{x}$ at $x=3$ using quadratic interpolation formula is $P_{2}(3)=0.325$, then the value of the unknown point η in the error formula is equal to :
(a) 2.9201
(b) 2.7859
(c) 3.1472
(d) None of these

Question 10: If $x_{0}=0, x_{1}=1, x_{2}=3$ and for a function $f(x)$, the divided differences are $f\left[x_{1}\right]=2, f\left[x_{2}\right]=3, f\left[x_{0}, x_{1}\right]=1, f\left[x_{1}, x_{2}\right]=\frac{1}{2}, f\left[x_{0}, x_{1}, x_{2}\right]=-\frac{1}{6}$. Then the approximation of $f\left(\frac{1}{2}\right)$ using quadratic interpolation Newton formula is:
(a) 1.5417
(b) 4.1232
(c) 2.3481
(d) None of these

Question 11: Let $f(x)=x^{3}$ and $h=0.1$. The absolute error for the approximation of $f^{\prime}(0.2)$ using 2 -point forward difference formula is:
(a) 0.0722
(b) 0.0711
(c) 0.0700
(d) None of these

Question 12: The absolute error for the approximation of the integral $\int_{1}^{2} \frac{1}{x+1} d x$ using simple Trapezoidal's rule is:
(a) 0.1120
(b) 0.0112
(c) 0.0012
(d) None of these

Question 13: The approximation to the integral $\int_{0}^{2} e^{x} d x$ using simple Simpson's rule is:
(a) 8.4207
(b) 7.4207
(c) 6.4207
(d) None of these

Question 14: For the initial value problem, $(x+1) y^{\prime}+y^{2}=0, y(0)=1, n=1$, if the actual solution of the differential equation is $y(x)=\frac{1}{(1+\ln (x+1))}$, then the absolute error by using Euler's method for the approximation of $y(0.05)$ is:
(a) 0.0350
(b) 0.0035
(c) 0.0042
(d) None of these

Question 15: Using the Taylor's method of order 2 to find the approximate value of $y(0.1)$ for the initial-value problem, $y^{\prime}=e^{-2 x}-2 y, y(0)=0.1, n=1$, is:
(a) 0.1620
(b) 0.1983
(c) 0.1846
(d) None of these

Question 16: Let $f(x)=\frac{3^{x}}{x}$ and $h=0.1$ Compute the approximate value of $f^{\prime \prime}(3)$ and the absolute error. If $\max \left|f^{(4)}\right|=6.1022$, then find the number of subintervals required to obtain the approximate value of $f^{\prime \prime}(3)$ within the accuracy 10^{-4}.

Solution. Given $x_{1}=3, h=0.1$, then the formula for $f^{\prime \prime}(3)$ becomes

$$
f^{\prime \prime}(3) \approx \frac{f(3+0.1)-2 f(3)+f(3-0.1)}{(0.1)^{2}}=D_{h}^{2} f(3),
$$

or

$$
f^{\prime \prime}(3) \approx \frac{f(3.1)-2 f(3)+f(2.9)}{0.01}=\frac{3^{3.1} / 3.1-2\left(3^{3} / 3\right)+3^{2.9} / 2.9}{0.01} \approx 6.2755=D_{h}^{2} f(3) .
$$

To compute the absolute error for our approximation we have to compute the second derivative of $f(x)$ as follows:

$$
\begin{gathered}
f^{\prime}(x)=\left(3^{x}[\ln (3) x-1]\right) / x^{2} \\
f^{\prime \prime}(x)=\left(3^{x}\left[(\ln (3))^{2} x^{2}-2 \ln (3) x+2\right]\right) / x^{3}
\end{gathered}
$$

Since the exact value of $f^{\prime \prime}(1)$ is

$$
f^{\prime \prime}(3)=\left(3^{3}\left[(\ln (3))^{2}(3)^{2}-2 \ln (3)(3)+2\right]\right) /(3)^{3}=6.2709
$$

therefore, the absolute error $|E|$ can be computed as follows:

$$
|E|=\left|f^{\prime \prime}(1)-D_{h}^{2} f(1)\right|=|6.2709-6.2755|=0.0046
$$

As the maximum value of the fourth derivative of the given function in the interval is given as

$$
M=\max _{2.9 \leq x \leq 3.1}\left|f^{(4)}\right|=6.1022
$$

and the accuracy required is 10^{-4}, so

$$
\left|E_{C}(f, h)\right| \leq \frac{h^{2}}{12} M \leq 10^{-4}
$$

we have $(\mathrm{h}=(3.1-2.9) / \mathrm{n})$

$$
\frac{(3.1-2.9)^{2} / n^{2}}{12} M \leq 10^{-4}, \quad \text { solving for } n^{2}, \quad n^{2} \geq \frac{(6.1022)(3.1-2.9)^{2}\left(10^{4}\right)}{12}
$$

by taking square root on both sides, we get, $n \geq 14.2621$, gives, $n=15$.

Question 17: Determine the number of subintervals required to approximate the integral $\int_{0}^{2} \frac{1}{x+4} d x$, with an error less than 10^{-4} using composite Simpson's rule. Then approximate the given integral and compute the absolute error.

Solution. We have to use the error formula of composite Simpson's rule which is

$$
\left|E_{S_{n}}(f)\right| \leq \frac{(b-a)}{180} h^{4} M \leq 10^{-4}
$$

Given the integrand is $f(x)=\frac{1}{x+4}$, and we have $f^{(4)}(x)=\frac{24}{(x+4)^{5}}$. The maximum value of $\left|f^{(4)}(x)\right|$ on the interval $[0,2]$ is $\frac{3}{128}$, and thus $M=\frac{3}{128}$. Using the above error formula and $h=2 / n$, we get

$$
\frac{48}{\left(90 \times 128 \times n^{4}\right)} \leq 10^{-4}, \quad \text { or } \quad n^{4} \geq \frac{48 \times 10^{4}}{(90 \times 128)}
$$

Solving for n, gives

$$
n \geq\left(\frac{48 \times 10^{4}}{(90 \times 128)}\right)^{1 / 4}=2.5407
$$

so the number of even subintervals n required is $n=4$. Thus the approximation of the given integral using $h=\frac{2-0}{4}=\frac{1}{2}=0.5$ is

$$
\begin{gathered}
\int_{0}^{2} \frac{1}{x+4} \approx \frac{0.5}{3}[f(0)+4[f(0.5)+f(1.5)]+2 f(1)+f(2)], \\
\int_{0}^{2} \frac{1}{x+4} \approx \frac{1}{6}[0.25+4(0.2222+0.1818)+2(0.2)+0.1667]=0.4055 .
\end{gathered}
$$

Since the exact value of the given integral is

$$
\alpha=\int_{0}^{2} \frac{1}{x+4} d x=\ln (1.5)=0.4055,
$$

so the absolute error is

$$
\text { AbsE }=\mid \text { exact solution }- \text { Approximate solution }|=|0.4055-0.4055|=0.0000,
$$

up to 4 decimal places.

