Differential and Integral Calculus (MATH-205)

Final Exam/Fall 2023
Time Allowed: 3 Hours
Date: Tuesday, December 19, 2023 Maximum Marks: 40

Note: Solve all 10 questions and give DETAILED solutions. Make sure your solutions are clearly written and contain all necessary details.

Question 1: $\left(4^{\circ}\right)$ Determine whether the following infinite series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{2^{n}+10}{n!}
$$

Question 2: $\left(4^{\circ}\right)$ Find the radius of convergence of the power series given by

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{2^{2 n+1}(n!)^{2}} \frac{x^{2 n-1}}{(2 n+1)}
$$

Question 3: (4°) Use the first three nonzero terms of a Maclaurin series to approximate $\int_{0}^{0.5} x \cos x^{2} d x$ and estimate the error in the approximation. Use 6 d.p. accuracy in your working.

Question 4: $\left(5^{\circ}\right)$ Show that the lines l_{1} passing through $A(1,-2,3)$ and $B(2,0,5)$ and l_{2} passing through $C(4,1,-1)$ and $D(-2,3,4)$ are skew lines. Find the shortest distance between l_{1} and l_{2}.

Question 5: $\left(2^{\circ}\right)$ Find the limit $\lim _{(x, z) \rightarrow(0,-3)} \frac{x^{4}-(z+3)^{4}}{x^{2}+(z+3)^{2}}$.
Question 6: $\left(3^{\circ}\right)$ Find z_{x} and z_{y} if $z=f(x, y)$ is determined implicitly by the equation

$$
x e^{y z}-2 y e^{x z}+3 z e^{x y}=1
$$

Give your answers in the simplest form.
— PTO -

Question 7: (6°) Find the local and global extrema and saddle points of $f(x, y)=x^{3}+3 x y-y^{3}$ on its domain. Then, find the boundary extrema on the triangular region R with vertices $A(1,2), B(1,-2)$, and $C(-1,-2)$.

Question 8: $\left(4^{\circ}\right)$ The following iterated double integral represents the volume of a solid under a surface S and over a region R in the xy-plane. Describe S and sketch R. Hence, find volume of the solid.

$$
\int_{-2}^{1} \int_{x-1}^{1-x^{2}}\left(x^{2}+y^{2}\right) d y d x
$$

Question 9: $\left(4^{\circ}\right)$ Evaluate the double integral $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \cos \left(x^{2}+y^{2}\right) d x d y$. Sketch the region R.

Question 10: $\left(4^{\circ}\right)$ Find the surface area of the first-octant portion of the cylinder $y^{2}+z^{2}=9$ that lies inside the cylinder $x^{2}+y^{2}=9$.

