

FINAL EXAMINATION, SEMESTER II, 1445
Department of Mathematics, College of Science
King Saud University
MATH 107 FULL MARK 40 TIME 3 HOURS

Q1. [Marks: $3 + 4 = 7$]

(a) Find the value of λ for which the following system of linear equations

$$3x + y + (\lambda^2 - 6)z = \lambda - 3$$

$$2x + 3y + z = -1$$

$$x + 2y + z = 0$$

has: (i) no solution (ii) unique solution (iii) infinitely many solutions.

(b) Use adjoint method to find the **inverse** of the coefficient matrix of the following system, and then using this inverse to find the solution of the system

$$x + 2y + 3z = 1$$

$$2x - y = 0$$

$$3x + 3z = 2$$

Q2: [Marks: $2 + 3 + 3 + 3 = 11$]

(a) If l has parametric equations $x = 5 - 3t, y = -2 + t, z = 1 + 9t$, find parametric equations for the line through $P(-6, 4, -3)$ that is parallel to l .

(b) Find an equation of the plane through the point $P(2, 4, -5)$ with normal $\mathbf{a} = -\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$.

(c) Find the volume of a box having adjacent sides AB, AC , and AD where

$A(2, 1, -1), B(3, 0, 2), C(4, -2, 1)$ and $D(5, -3, 0)$.

(d) Sketch the graph of $4x^2 - 9y^2 + z^2 = 36$ in an xyz - coordinate system, give traces and identify the surface.

Q3: [Marks: $3 + 4 + 3 = 10$]

(a) A moving particle starts at an initial position $\mathbf{r}(0) = \langle 1, 0, 0 \rangle$ with initial vector $\mathbf{v}(0) = \mathbf{i} - \mathbf{j} + \mathbf{k}$. If its acceleration $\mathbf{a}(t) = 4t\mathbf{i} + 6t\mathbf{j} + \mathbf{k}$, find the velocity and position at time t .

(b) Find tangential component of acceleration and normal component of acceleration for the curve given by $\mathbf{r}(t) = 2t\mathbf{i} + t^2\mathbf{j} - \frac{1}{3}t^3\mathbf{k}$. Also, find curvature.

(c) Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$. Show that $\lim_{(x,y) \rightarrow (0,0)} f(x, y)$ does not exist.

Q4: [Marks: $3 + 3 + 3 + 3 = 12$]

(a) Find the equation of the tangent plane, and the parametric equations for the normal line to the graph of $x^3 - 2xy + z^3 + 7y + 6 = 0$ at the point $P(1, 4, -3)$.

(b) Find the directional derivative of $f(x, y, z) = xy + yz + xz$ at

the point $A(1, 1, 1)$ in the direction of the vector $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$.

(c) If $g(x, y) = -x^3 + 4xy - 2y^2 + 1$, find the local extrema and saddle points of g .

(d) Let $f(x, y, z) = 2x^2 + y^2 + 3z^2$. Use Lagrange multiplier to find minimum value of f subject to the constraint $2x - 3y - 4z = 49$.

