

Q1. (a) Without using truth tables show that $[(p \rightarrow q) \wedge p] \rightarrow q$ is a tautology. (3)
 (b) Use induction to show that $4 + 12 + 20 + \dots + (8n - 4) = (2n)^2$ for all $n \geq 1$. (4)
 (c) Suppose m and n are integers. Use a proof by contraposition to show that:
 if $4 \mid (m^2 + n^2)$, then m or n is even. (3)

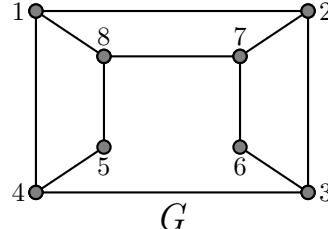
Q2. (a) Let E be the relation on $\mathbb{R} - \{0\}$ defined as follows:

xEy if and only if $\frac{x}{y}$ is a **positive** rational number.

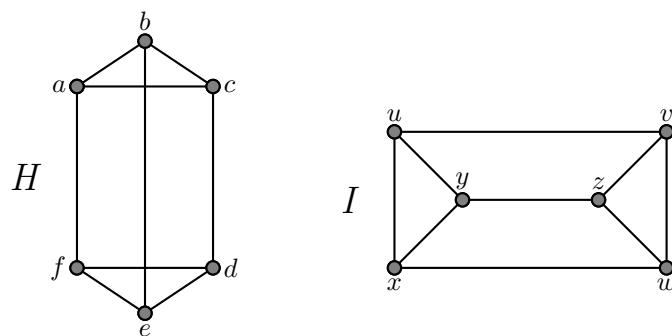
(i) Show that E is an equivalence relation. (3)
 (ii) Find $[1]$. (1)
 (iii) Is $\sqrt{27}$ in $[-\sqrt{12}]$? (Justify your answer.) (1)

(b) Let $P = \{(1,1), (2,1), (2,2), (3,1), (3,3), (4,1), (4,4), (5,1), (5,5)\}$ be a relation on $A = \{1, 2, 3, 4, 5\}$.
 (i) Show that P is a partial order. (3)
 (ii) Is P a total order? (Justify your answer.) (1)
 (iii) Represent P by a Hasse diagram. (1)

Q3. (a) Find the number of vertices of the complete bipartite graph $K_{n,2n^2}$ which has 16 edges. (2)
 (b) Determine whether the following graph G is bipartite. If so, find a bipartite representation. (2)



(c) Determine if the graphs H and I below are isomorphic. (2)



Q4. (a) For the graph I in **Q3(c)**, find a spanning tree with root v ,

- (i) using *depth-first* search; (1)
- (ii) using *breadth-first* search. (1)

(b) Show that a tree with 12 vertices cannot be a complete graph. (1)

(c) Using alphabetical order, form a binary search tree for the words:
January, February, March, April, May, June, July, August. (2)

Q5. (a) Without using tables, prove the following Boolean identity. (2)

$$\overline{x\bar{y} + y} = \overline{x + y}.$$

(b) Let $f(x, y, z) = (x + yz)(y + \bar{z})$ be a Boolean function.

- (i) Find the complete sum-of-products expansion (CSP) of f . (2)
- (ii) Find the complete product-of-sums expansion (CPS) of f . (2)

(c) Let $g(x, y, z) = xy\bar{z} + x\bar{y}\bar{z} + \bar{x}yz + \bar{x}y\bar{z} + \bar{x}\bar{y}z$ be a Boolean function.

- (i) Build the Karnaugh map of g . (1)
- (ii) Simplify g (i.e., write it in MSP form). (2)