King Saud University College of Sciences Department of Mathematics Semester 462 / Final Exam / MATH-244 (Linear Algebra)

Max. Marks: 40			Time: 5 hours
Name:	ID:	Section:	Signature:
Note: Attempt all the five question	ns. Calculators are n	ot allowed.	
Question 1 [Marks 10]: Which of	the given choices are co	orrect?	
(i) If square of a matrix A is zer	n matrix then I - A	is equal to:	
a) 0	b) (A-I) ⁻¹	c) (A+I) -1	d) $A+I$
(ii) If A is a square matrix of or	der 3 with $det(A) = 2$, the	hen $det(det(\frac{1}{det(A)}A^3)$) A^{-1}) is equal to:
a) 1/4	h) 1/2	c) 1/3	d) 1/16
(iii) If the general solution of AX general solution of $AX = B$ is	$= 0$ is $(-2r, 4r, r), r \in$	\mathbb{R} , and $(1,0,-2)$ is a	solution of $AX = B$, then the
a) $(1-2r,4r,r-2)$	b) (-2r, 0, -2r)	c) (-2r, 4r, r)	d) $(-2r-1,4r,r-2)$
(iv) A subset S of R ³ is a basis of	the vector space \mathbb{R}^3 if	S is equal to:	
			(2.1) 1) ((1.1.0) (2.1.0) (2.1.0)
\			,(3,2,1)} d) {(1,1,0),(0,0,1),(2,2,1)
(v) If $B = \{u_1 = (2,1), u_2 = (4, transition matrix P_{C \rightarrow B} from C$	3)) and $C = \{v_1 = (0,1)\}$ to B is equal to:	1), $v_2 = (6,0)$ } are or	dered bases of \mathbb{R}^2 , then the
a) $\begin{bmatrix} 1 & -1/2 \\ -2 & 3/2 \end{bmatrix}$	b) $\begin{bmatrix} -2 & 9 \\ 1 & -3 \end{bmatrix}$	c) $\begin{bmatrix} -2/3 & 3 \\ 1/3 & -1 \end{bmatrix}$	d) $\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$
(vi) If B is a square matrix of order	3 with $det(B) = 2$,	then $nullity(B)$ is equ	aal to:
a) 2	b) 1	c) 3	d) 0
(vii) If \langle , \rangle is an inner product on \mathbb{R} $\langle u + 2v, 5u - v \rangle$ is equal to:	n and $u,v \in \mathbb{R}^n$ such the	$\inf \ u\ ^2 = 5, \ v\ ^2 =$	$1, \langle u, v \rangle = -2$, then
a) √5	b) 5	c) 9	d) 41
(viii) If $S = \{A, I_2\} \subseteq M_{2\times 2}(\mathbb{R})$, when	ere A is a non-symmet	ric matrix, then S must	be:
a) linearly dependent	b) a spanning set for	$M_{2\times 2}(\mathbb{R})$ c) linearly	independent d) orthogonal
(ix) Let T be the transformation $u \in \mathbb{R}^2$, where $ u $ is the Eucli	n from the Euclidea dean norm of u. Then,	n space \mathbb{R}^2 to \mathbb{R} give for $v, w \in \mathbb{R}^2$ and k	n by $T(u) = u $ for all $\in \mathbb{R}$, T satisfies:
a) $T(u+v) = T(u) + T(u)$	$T(v)$ b) $T(u+v) \le$	T(u) + T(v) c) $T(0)$	> 0 d) $T(ku) = kT(u)$
(x) Zero is an eigenvalue of the ma	$\operatorname{trix} \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix} $ with ge	eometric multiplicity eq	ual to:
a) 1 b)) 2 ¹⁴ 4 4 1 c)	3 d)	4

c, b, a, a, b, d, b, c, b, b i, ii, iii, iv, v, vi, vii, vii, ix, x

Page 2 of 2

Question 2 [Marks 2 + 2 + 3]:

estion 2 [Marks Z + Z + 3].

(a) Find the square matrix A of order 3 such that $A^{-1}(A - I) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ and evaluate det(A).

(b) Let $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & -2 \\ -2 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 1 & 1 \\ -1 & 1 & -2 \\ 1 & -1 & -2 \end{bmatrix}$. Find a matrix X that satisfies XA = B. (c) Solve the following system of linear equations:

$$x + y + z = 1$$

 $2x + 2z = 3$
 $3x + 5y + 4z = 2$.

Question 3 [Marks 3+3+2]:

Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$. Then:

- (a) Find a basis and the dimension for each of the vector spaces row(A), col(A), and N(A).
- (b) Decide with justification whether the following statements are true or false:

(i)
$$row(A) = row(B)$$

(ii)
$$col(A) = col(B)$$

(iii)
$$N(A) = N(B)$$
.

(c) Find all square matrices Z of order 3 such that AZ = 0.

Question 4 [Marks 3 + (1+3)]:

- (a) Construct an orthonormal basis C of the Euclidean space \mathbb{R}^3 by applying the Gram-Schmidt algorithm on the given basis $B = \{v_1 = (1,1,0), v_2 = (1,0,1), v_3 = (0,1,1)\}$, and then find the coordinate vector of $v = (1,2,0) \in \mathbb{R}^3$ relative to the orthonormal basis C.
- (b) Let 3 denote the vector space of real polynomials with degree ≤ 2. Consider the linear transformation $T: \mathbb{R}^3 \to \mathcal{S}_2$ defined by: $T(1,0,0) = x^2 + 1$, $T(0,1,0) = 3x^2 + 2$, $T(0,0,1) = -x^2$. Then:
 - (i) Compute T(a, b, c), for all $(a, b, c) \in \mathbb{R}^3$.
 - (ii) Find a basis for each of the vector spaces Im(T) and ker(T).

Question 5 [Marks 3+2+3]: Let $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 1 & -1 \\ 2 & 2 & -2 \end{bmatrix}$. Then:

- (a) Find the eigenvalues of A.
- (b) Find algebraic and geometric multiplicities of all the eigenvalues of A.
- (c) Is the matrix A diagonalizable? If yes, find a matrix P that diagonalizes A.