King Saud University

Department of Mathematics

Final Exam in Math151, Semester 2, 1443H.
 Calculators are not allowed
 (The exam is two-pages long)

Q1. (a) Without using truth tables show that $(p \rightarrow q) \rightarrow r$ is logically equivalent to $(\neg r \rightarrow p) \wedge(q \rightarrow r)$. $(2 \mathrm{pts})$
(b) Use induction to show the following for every $n \geq 2$:

$$
\left(\frac{1}{2}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{6}\right)\left(\frac{1}{2}-\frac{1}{8}\right) \cdots\left(\frac{1}{2}-\frac{1}{2 n}\right)=\frac{1}{2^{n-1} n} .(4 \mathrm{pts})
$$

(c) Assuming that $\sqrt{6}$ is irrational, use a proof by way of contradiction to show that $\frac{5 \sqrt{6}-3}{2}+4$ is irrational. (2pts)
Q2. (a) Let R be the relation on \mathbb{Z} (the set of integers) defined by $m R n$ if and only if $2 \mid(m+n)$.
(i) Show that R is an equivalence relation. (3pts)
(ii) Find the equivalence classes [0] and [1]. (2pts)
(b) Let P be the relation on $\{1,3,5\}$ defined by: $a P b \Longleftrightarrow a<b+2$.
(i) List all ordered pairs of P. (2pts)
(ii) Represent P by a digraph. (1 pts)
(iii) Show that P is a partial order. (3pts)
(iv) Is P a total order? (Justify your answer.) (1pts)
(v) Represent P by a Hasse diagram. (1pts)

Q3. (a) Let G be a graph with degree-sequence: $a-3, a-2, a-1, a, a+2$. Find the value of a if G has 8 edges. (2pts)
(b) Let T be a tree with 12 edges. Find the number of vertices of T and the number of edges of the complement \bar{T} of T. (2pts)
(c) Determine whether the graph H below is bipartite. If so, give a bipartite representation. (2 pts)

(d) Determine whether the following graphs I and J are isomorphic. (2pts)

Q4. (a) For the graph L below, find a spanning tree with root b,

(i) using depth-first search; (1pts)
(ii) using breadth-first search. (1pts)
(b) Using alphabetical order, form a binary search tree for the words purple, black, yellow, green, blue, white, grey. (2 pts)
Q5. (a) Let $f(x, y, z)=\overline{\bar{x}} y+\bar{y} z+\bar{y}$ be a Boolean function.
(i) Find the complete sum-of-products expansion (CSP) of $f .(2 \mathrm{pts})$
(ii) Find the complete product-of-sums expansion (CPS) of f. (2pts)
(b) Let $g(x, y, z, w)=x y z w+x y z \bar{w}+x y \bar{z} w+x \bar{y} \bar{z} w+\bar{x} \bar{y} z w+\bar{x} \bar{y} z \bar{w}+\bar{x} y z w+\bar{x} y \bar{z} \bar{w}+\bar{x} y \bar{z} w$ be a Boolean function.
(i) Build the Karnaugh map of g. (1pts)
(ii) Simplify g (i.e., write in MSP form). (2pts)

