King Saud University
Department of Mathematics

Final Exam in Math 151
Semester 1, 1443 H.

Calculators are not allowed

 The Examination contains 2 pagesQ1. (a) Without using truth tables show that $(p \wedge q) \vee(\neg p \wedge q) \vee(p \wedge \neg q) \equiv p \vee q$. (2pts)
(b) Suppose a, b and c are integers. Prove that if a divides $(b-1)$ and a divides $(c-1)$; then a divides ($b c-1$). (3pts)
(c) Use induction to show that $1+5+9+\ldots+(4 n-3)=n(2 n-1)$ for all $n \geq 1$. (4pts)

Q2. (a) Let R be the relation on \mathbb{Q} (the set of rational numbers) defined by $x R y$ if and only if $x-y$ is an integer.
(i) Show that R is an equivalence relation. (3pts)
(ii) Find the equivalence class $[0]$. (1pts)
(iii) Show that $[7 / 16] \neq[-1 / 8]$. (1pts)
(b) Let $P=\{(a, a),(a, c),(b, b),(b, d),(c, c),(d, d)\}$ be a relation on the set $A=\{a, b, c, d\}$.
(i) Represent P by a digraph. (1pts)
(ii) Show that P is a partial order. (3pts)
(iii) Is P a total order? (Justify your answer.) (1pts)
(iv) Represent P by a Hasse diagram. (1pts)

Q3. (a) Find the number of vertices n of a complete graph K_{n} which has 36 edges. (2pts)
(b) Let G be the graph below.

(i) Determine whether G is bipartite. (Justify your answer)(2pts)
(ii) Find a simple path from a to h of length 4. (1pts)
(iii) Find a cycle from a to a of length 6. (1pts)
(c) Determine whether the following graphs M and N are isomorphic. (Justify your answer)(2pts)

Q4. (a) For the graph H below, find a spanning tree with root r,

(i) using depth-first search; (1 pts)
(ii) using breadth-first search. (1 pts)
(b) Form a binary search tree for the words english, chinese, russian, german, arabic, spanish, french. (using alphabetical order). (2 pts)

Q5. (a) Prove the following Boolean identity. (2pts)

$$
(x+y)(x+\bar{y})(\bar{x}+y)=x y .
$$

(b) Find the complete sum-of-products expansion (CSP) for the function $f(x, y, z)=(x+\bar{y} z)(\bar{x}+z) .(2 \mathrm{pts})$
(c) Find the complete product-of-sums expansion (CPS) for the function $g(x, y, z)=\bar{y}+x \bar{z} .(2 \mathrm{pts})$
(d) Use a K-map to simplify the following sum-of-products expansion (i.e., write in MSP form).(2pts)

$$
x y z+x \bar{y} \bar{z}+x \bar{y} z+\bar{x} y \bar{z}+\bar{x} \bar{y} z .
$$

