Question 1 :

1. The function $\sin \left(\frac{\pi}{2} x\right)$ is continuous, so $U(g)=1+\int_{0}^{1} \sin \left(\frac{\pi}{2} x\right) d x=1+\frac{2}{\pi}$ and $L(g)=\int_{0}^{1} \sin \left(\frac{\pi}{2} x\right) d x=\frac{2}{\pi}$.
2. g is not Riemann integrable.
3. $g=\sin \left(\frac{\pi}{2} x\right)$ a.e, then g is Lebesgue integrable.

Question 2 :

1. $\frac{1}{e^{-x}+e^{x}} \leq e^{-x}$ and $\int_{1}^{+\infty} e^{-x} d x=\frac{1}{e}$, then the integral $\int_{1}^{+\infty} \frac{d x}{e^{-x}+e^{x}}$ is convergent.
2. $\frac{e^{-x}}{x} \geq \frac{1}{e x}$ and $\int_{0}^{1} \frac{1}{e x} d x=+\infty$, then the integral $\int_{0}^{1} \frac{e^{-x}}{x} d x$ is divergent.

Question 3 :

1. Since the sequence $\left(\frac{1}{n+x^{2}}\right)_{n}$ is decreasing, the $\left|\sum_{k=n}^{m} \frac{(-1)^{k}}{k+x^{2}}\right| \leq \frac{1}{n+x^{2}}$, for all $n \leq m \in \mathbb{N}$ and $x \in \mathbb{R}$.
2. (a) We deduce that $\sup _{x \in \mathbb{R}}\left|\sum_{k=n}^{m} \frac{(-1)^{k}}{k+x^{2}}\right| \leq \frac{1}{n} \underset{n \rightarrow+\infty}{\longrightarrow} 0$, then the series $\sum_{n \geq 1} f_{n}(x)$ is uniformly convergent on \mathbb{R}.
(b) As the functions f_{n} are continuous and the convergence is uniform of \mathbb{R}, then f is continuous on \mathbb{R}.
(c) As the convergence is uniform of the series $\sum_{n \geq 1} f_{n}(x)$ on \mathbb{R} and $\lim _{x \rightarrow+\infty} f_{n}(x)=0$, then $\lim _{x \rightarrow+\infty} f(x)=0$.

Question 4:

Define the sequence of functions $\left(f_{n}\right)_{n}$ on $[0, \infty)$ by: $f_{n}(x)=\frac{n^{2} x}{1+n^{2} x^{3}}$ for all $n \in \mathbb{N}$.

1. $\lim _{n \rightarrow+\infty} f_{n}(0)=0$ and $\lim _{n \rightarrow+\infty} f_{n}(x)=\frac{1}{x^{2}}$, for $x \neq 0$.
2. $\left|f_{n}(x)-f(x)\right|=\frac{1}{x^{2}\left(1+n^{2} x^{3}\right)} \leq \frac{1}{n^{2}}$ for $x \geq 1$, then the sequence $\left(f_{n}\right)_{n}$ is uniformly convergent on the interval $[1, \infty)$.
The functions f_{n} are continuous on $[0,1]$ but the limit is not continuous, then the sequence $\left(f_{n}\right)_{n}$ is not uniformly convergent on $[0,1]$.
3. Course
4. The sequence $\left(f_{n}\right)_{n}$ is increasing, then $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n^{2} x}{1+n^{2} x^{3}} d x=\int_{0}^{1} \frac{d x}{x^{2}} d x=$ $+\infty$.

Question 5 :

1. A subset E of \mathbb{R} is said to be measurable with respect to the Lebesgue outer measure m^{*} if

$$
m^{*}(X)=m^{*}(X \cap E)+m^{*}\left(X \cap E^{c}\right), \quad \forall X \subset \mathbb{R}
$$

2. If $m^{*}(E)=0$, then for $X \subset \mathbb{R}, m^{*}(X \cap E)=0$ and $m^{*}\left(X \cap E^{c}\right) \leq m^{*}(X)$. Then $m^{*}(X) \geq m^{*}(X \cap E)+m^{*}\left(X \cap E^{c}\right)$. Moreover as m^{*} is an outer measure, $m^{*}(X) \leq m^{*}(X \cap E)+m^{*}\left(X \cap E^{c}\right)$. Then $m^{*}(X)=m^{*}(X \cap$ $E)+m^{*}\left(X \cap E^{c}\right)$ and E is measurable.
3. As $m^{*}(\{a\})=0$ for all $a \in \mathbb{R}$, then for any countable set E in \mathbb{R}, $m^{*}(E)=0$.
4. As $m^{*}([0,1])=1$, then $[0,1]$ is not countable.
