Question 1 :

- 1. The function $\sin(\frac{\pi}{2}x)$ is continuous, so $U(g) = 1 + \int_0^1 \sin(\frac{\pi}{2}x) dx = 1 + \frac{2}{\pi}$ and $L(g) = \int_0^1 \sin(\frac{\pi}{2}x) dx = \frac{2}{\pi}$.
- 2. g is not Riemann integrable.
- 3. $g = \sin(\frac{\pi}{2}x)$ a.e., then g is Lebesgue integrable.

Question 2 :

1.
$$\frac{1}{e^{-x} + e^x} \le e^{-x}$$
 and $\int_1^{+\infty} e^{-x} dx = \frac{1}{e}$, then the integral $\int_1^{+\infty} \frac{dx}{e^{-x} + e^x}$ is convergent.

2.
$$\frac{e^{-x}}{x} \ge \frac{1}{ex}$$
 and $\int_0^1 \frac{1}{ex} dx = +\infty$, then the integral $\int_0^1 \frac{e^{-x}}{x} dx$ is divergent.

Question 3 :

- 1. Since the sequence $(\frac{1}{n+x^2})_n$ is decreasing, the $\left|\sum_{k=n}^m \frac{(-1)^k}{k+x^2}\right| \le \frac{1}{n+x^2}$, for all $n \le m \in \mathbb{N}$ and $x \in \mathbb{R}$.
- 2. (a) We deduce that $\sup_{x \in \mathbb{R}} \left| \sum_{k=n}^{m} \frac{(-1)^k}{k+x^2} \right| \leq \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$, then the series $\sum_{n \geq 1} f_n(x)$ is uniformly convergent on \mathbb{R} .
 - (b) As the functions f_n are continuous and the convergence is uniform of \mathbb{R} , then f is continuous on \mathbb{R} .
 - (c) As the convergence is uniform of the series $\sum_{n\geq 1} f_n(x)$ on \mathbb{R} and $\lim_{x\to+\infty} f_n(x) = 0$, then $\lim_{x\to+\infty} f(x) = 0$.

Question 4:

Define the sequence of functions $(f_n)_n$ on $[0, \infty)$ by: $f_n(x) = \frac{n^2 x}{1 + n^2 x^3}$ for all $n \in \mathbb{N}$.

- 1. $\lim_{n \to +\infty} f_n(0) = 0$ and $\lim_{n \to +\infty} f_n(x) = \frac{1}{x^2}$, for $x \neq 0$.
- 2. $|f_n(x) f(x)| = \frac{1}{x^2(1+n^2x^3)} \leq \frac{1}{n^2}$ for $x \geq 1$, then the sequence $(f_n)_n$ is uniformly convergent on the interval $[1, \infty)$. The functions f_n are continuous on [0, 1] but the limit is not continuous, then the sequence $(f_n)_n$ is not uniformly convergent on [0, 1].
- 3. Course
- 4. The sequence $(f_n)_n$ is increasing, then $\lim_{n \to \infty} \int_0^1 \frac{n^2 x}{1 + n^2 x^3} dx = \int_0^1 \frac{dx}{x^2} dx = +\infty$.

Question 5 :

1. A subset E of \mathbb{R} is said to be measurable with respect to the Lebesgue outer measure m^* if

$$m^*(X) = m^*(X \cap E) + m^*(X \cap E^c), \quad \forall X \subset \mathbb{R}.$$

- 2. If $m^*(E) = 0$, then for $X \subset \mathbb{R}$, $m^*(X \cap E) = 0$ and $m^*(X \cap E^c) \leq m^*(X)$. Then $m^*(X) \geq m^*(X \cap E) + m^*(X \cap E^c)$. Moreover as m^* is an outer measure, $m^*(X) \leq m^*(X \cap E) + m^*(X \cap E^c)$. Then $m^*(X) = m^*(X \cap E) + m^*(X \cap E^c)$ and E is measurable.
- 3. As $m^*(\{a\}) = 0$ for all $a \in \mathbb{R}$, then for any countable set E in \mathbb{R} , $m^*(E) = 0$.
- 4. As $m^*([0,1]) = 1$, then [0,1] is not countable.