King Saud University Faculty of Sciences Department of Mathematics

Final Examination Math 481 Semester II - 1445 Time: 3H

Question 1:

Let $f: [0,1] \longrightarrow \mathbb{R}$ be the function defined by:

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 0 & \text{if } x \notin \mathbb{Q} \cap [0, 1] \end{cases}$$

Define the function $g(x) = f(x) + \sin(\frac{\pi}{2}x)$, for $x \in [0, 1]$.

- 1. Find U(g) and L(g).
- 2. Is g Riemann integrable?
- 3. Is g Lebesgue integrable?

Question 2:

Determine if the following improper integrals are convergent or divergent:

1.
$$\int_{1}^{+\infty} \frac{dx}{e^{-x} + e^{x}}$$

2.
$$\int_0^1 \frac{e^{-x}}{x} dx$$
.

Question 3:

Define the sequence of functions $(f_n)_n$ on \mathbb{R} by: $f_n(x) = \frac{(-1)^n}{n+x^2}$, for all $n \in \mathbb{N}$.

- 1. Prove the inequality $\left|\sum_{k=n}^{m} \frac{(-1)^k}{k+x^2}\right| \leq \frac{1}{n+x^2}$, for all $n \leq m \in \mathbb{N}$ and $x \in \mathbb{R}$.
- 2. Deduce
 - (a) the series $\sum_{n\geq 1} f_n(x)$ is uniformly convergent on \mathbb{R} ,

(b) the function
$$f$$
 is continuous on \mathbb{R} , where $f(x) = \sum_{n=1}^{+\infty} f_n(x)$,

(c)
$$\lim_{x \to +\infty} f(x) = 0.$$

Question 4:

Define the sequence of functions $(f_n)_n$ on $[0,\infty)$ by: $f_n(x) = \frac{n^2x}{1+n^2x^3}$ for all $n \in \mathbb{N}$.

- 1. Prove that the sequence $(f_n)_n$ is convergent and find its limit.
- 2. Show that the sequence $(f_n)_n$ is uniformly convergent on the interval $[1, \infty)$ but is not uniformly convergent on [0, 1].
- 3. State the Monotone Convergence Theorem.
- 4. Evaluate $\lim_{n\to\infty} \int_0^1 \frac{n^2x}{1+n^2x^3} dx$.

Question 5:

- 1. State the definition of a measurable set with respect to the Lebesgue outer measure m^* .
- 2. Prove that if $m^*(E) = 0$, then E is measurable.
- 3. Prove that $m^*(E) = 0$ for any countable set E in \mathbb{R} .
- 4. Deduce that [0, 1] is not countable.