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Question 1 :
Let f:[0,1] — R be the function defined by:
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Define the function g(z) = f(z) + sin(§x), for z € [0, 1].
1. Find U(g) and L(g).
2. Is g Riemann integrable?

3. Is g Lebesgue integrable?

Question 2 :
Determine if the following improper integrals are convergent or divergent:
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Question 3 :

_1)
Define the sequence of functions (f,), on R by: f,(x) = %, for all n € N.
n+x

for all n < m € N and

1. Prove the inequality
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z € R.

2. Deduce

(a) the series Z fn(x) is uniformly convergent on R,

n>1



+oo
(b) the function f is continuous on R, where f(z) = Z ful(z),
n=1

(¢) lim f(z)=0.
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Question 4 :
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Deﬁr;\;a the sequence of functions (f,), on [0,00) by: f,(z) = T2 for all
n € N.

1. Prove that the sequence (f,), is convergent and find its limit.

2. Show that the sequence (f,), is uniformly convergent on the interval
[1,00) but is not uniformly convergent on [0, 1].

3. State the Monotone Convergence Theorem.
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4. Evaluate lim ——dx.
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Question 5 :

1. State the definition of a measurable set with respect to the Lebesgue
outer measure m”*.

2. Prove that if m*(E) = 0, then E is measurable.
3. Prove that m*(FE) = 0 for any countable set F in R.

4. Deduce that [0, 1] is not countable.



