King Saud University Faculty of Sciences Department of Mathematics

Final Examination Math 481 Semester I - 1445 Time: 3H

Question 1 :

1. Let $f: [0,1] \longrightarrow \mathbb{R}$ be the function defined by:

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ -x & \text{if } x \notin \mathbb{Q} \cap [0, 1] \end{cases}$$

- (a) Find U(f) and L(f).
- (b) Is f Riemann integrable?
- (c) Is f Lebesgue integrable?
- 2. Use Darboux sums $S(f, P_n, \alpha_n)$ to compute the integral $\int_0^1 (x^2 \pi x) dx$. $(P_n = \{x_0, \ldots, x_n\}$ the uniform partition of [0, 1] and α_n the mark on P_n defined by: $\alpha_n = (x_1, \ldots, x_n)$).

Question 2 :

Define the sequence of functions $(f_n)_n$ on \mathbb{R} by: $f_n(x) = \frac{nx}{1+n^2x^2}$ for all $n \in \mathbb{N}$.

- 1. Prove that the sequence $(f_n)_n$ is convergent and find its limit.
- 2. Show that the sequence $(f_n)_n$ is uniformly convergent on the interval [1, 2] but is not uniformly convergent on [0, 1].
- 3. State the Bounded Convergence Theorem.

4. Evaluate
$$\lim_{n \to \infty} \int_0^1 \frac{nx}{1 + n^2 x^2} dx$$
.

Question 3 :

Define the sequence of functions $(f_n)_n$ on \mathbb{R} by: $f_n(x) = \frac{(-1)^n}{n+x^2}$, for all $n \in \mathbb{N}$.

- 1. Prove the inequality $\left|\sum_{k=n}^{m} \frac{(-1)^k}{k+x^2}\right| \leq \frac{1}{n+x^2}$, for all $n \leq m \in \mathbb{N}$ and $x \in \mathbb{R}$.
- 2. Deduce

(a) the series
$$\sum_{n\geq 1} f_n(x)$$
 is uniformly convergent on \mathbb{R} ,

(b) the function f is continuous on \mathbb{R} , where $f(x) = \sum_{n=1}^{+\infty} f_n(x)$,

(c)
$$\lim_{x \to +\infty} f(x) = 0.$$

Question 4 :

- 1. State the definition of a measurable set with respect to the Lebesgue outer measure m^* .
- 2. Prove that if $m^*(E) = 0$, then E is measurable.
- 3. Prove that $m^*(E) = 0$ for any countable set E in \mathbb{R} .
- 4. Deduce that [0, 1] is not countable.

Question 5 :

- 1. Prove that if $f : \mathbb{R} \longrightarrow (0, +\infty]$ is Lebesgue measurable, then $\frac{1}{f}$ is also Lebesgue measurable.
- 2. State Fatou lemma.
- 3. Use Lebesgue integral theorems to compute the following limit

$$\lim_{n \to +\infty} \int_0^n (1 + \frac{x}{n})^n e^{-2x} dx.$$

4. Prove that
$$\int_0^1 \frac{(x \ln x)^2}{1+x^2} = 2 \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{(2n+1)^3}$$
.

(Hint: use the power series representation $\frac{1}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n x^{2n}$.)