King Saud University

Faculty of Sciences
Department of Mathematics

Final Examination Math 481 Semester I-1445 Time: 3H

Question 1 :

1. Let $f:[0,1] \longrightarrow \mathbb{R}$ be the function defined by:

$$
f(x)=\left\{\begin{array}{cl}
x & \text { if } x \in \mathbb{Q} \cap[0,1] \\
-x & \text { if } x \notin \mathbb{Q} \cap[0,1]
\end{array}\right.
$$

(a) Find $U(f)$ and $L(f)$.
(b) Is f Riemann integrable?
(c) Is f Lebesgue integrable?
2. Use Darboux sums $S\left(f, P_{n}, \alpha_{n}\right)$ to compute the integral $\int_{0}^{1}\left(x^{2}-\pi x\right) d x$. ($P_{n}=\left\{x_{0}, \ldots, x_{n}\right\}$ the uniform partition of $[0,1]$ and α_{n} the mark on P_{n} defined by: $\left.\alpha_{n}=\left(x_{1}, \ldots, x_{n}\right)\right)$.

Question 2 :

Define the sequence of functions $\left(f_{n}\right)_{n}$ on \mathbb{R} by: $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ for all $n \in \mathbb{N}$.

1. Prove that the sequence $\left(f_{n}\right)_{n}$ is convergent and find its limit.
2. Show that the sequence $\left(f_{n}\right)_{n}$ is uniformly convergent on the interval $[1,2]$ but is not uniformly convergent on $[0,1]$.
3. State the Bounded Convergence Theorem.
4. Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n x}{1+n^{2} x^{2}} d x$.

Question 3 :

Define the sequence of functions $\left(f_{n}\right)_{n}$ on \mathbb{R} by: $f_{n}(x)=\frac{(-1)^{n}}{n+x^{2}}$, for all $n \in \mathbb{N}$.

1. Prove the inequality $\left|\sum_{k=n}^{m} \frac{(-1)^{k}}{k+x^{2}}\right| \leq \frac{1}{n+x^{2}}$, for all $n \leq m \in \mathbb{N}$ and $x \in \mathbb{R}$.
2. Deduce
(a) the series $\sum_{n \geq 1} f_{n}(x)$ is uniformly convergent on \mathbb{R},
(b) the function f is continuous on \mathbb{R}, where $f(x)=\sum_{n=1}^{+\infty} f_{n}(x)$,
(c) $\lim _{x \rightarrow+\infty} f(x)=0$.

Question 4 :

1. State the definition of a measurable set with respect to the Lebesgue outer measure m^{*}.
2. Prove that if $m^{*}(E)=0$, then E is measurable.
3. Prove that $m^{*}(E)=0$ for any countable set E in \mathbb{R}.
4. Deduce that $[0,1]$ is not countable.

Question 5 :

1. Prove that if $f: \mathbb{R} \longrightarrow(0,+\infty]$ is Lebesgue measurable, then $\frac{1}{f}$ is also Lebesgue measurable.
2. State Fatou lemma.
3. Use Lebesgue integral theorems to compute the following limit

$$
\lim _{n \rightarrow+\infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x
$$

4. Prove that $\int_{0}^{1} \frac{(x \ln x)^{2}}{1+x^{2}}=2 \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{(2 n+1)^{3}}$.
(Hint: use the power series representation $\frac{1}{1+x^{2}}=\sum_{n=0}^{+\infty}(-1)^{n} x^{2 n}$.)
