King Saud University

Faculty of Sciences

Department of Mathematics

Solution of Final Examination Math 481 Semester I - 1445

Question 1 :

1. (a) Since \mathbb{Q} is dense in \mathbb{R}, then for all $[a, b] \subset[0,1], \sup _{x \in[a, b]} f(x)=b$ and $\inf _{x \in[a, b]} f(x)=-b$. We deduce that $U(f)=\int_{0}^{1} x d x=\frac{1}{2}$ and $L(f)=\int_{0}^{1}-x d x=-\frac{1}{2}$.
(b) As $U(f) \neq L(f)$, then f is not Riemann integrable.
(c) $f(x)=x$ a.e, then f Lebesgue integrable and $\int_{[0,1]} f(x) d m(x)=\frac{1}{2}$.
2.

$$
\begin{aligned}
S\left(f, P_{n}, \alpha_{n}\right) & =\frac{1}{n} \sum_{k=1}^{n}\left(\frac{k^{2}}{n^{2}}-\pi \frac{k}{n}\right) \\
& =\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2}-\frac{\pi}{n^{2}} \sum_{k=1}^{n} k \\
& =\frac{n(n+1)(2 n+1)}{6 n^{3}}-\frac{\pi n(n+1)}{2 n^{2}} .
\end{aligned}
$$

Then $\int_{0}^{1}\left(x^{2}-\pi x\right) d x=\lim _{n \rightarrow+\infty}\left(\frac{n(n+1)(2 n+1)}{6 n^{3}}-\frac{\pi n(n+1)}{2 n^{2}}\right)=\frac{1}{3}-\frac{\pi}{2}$.

Question 2 :

1. $\lim _{n \rightarrow+\infty} f_{n}(x)=0$, for all $x \in \mathbb{R}$.
2. $f_{n}\left(\frac{1}{n}\right)=\frac{1}{2}$, then the sequence $\left(f_{n}\right)_{n}$ is not uniformly convergent on $[0,1]$. For all $n \in \mathbb{N}$, the function f_{n} is decreasing on the interval $[1,2]$, then $0 \leq f_{n}(x) \leq f_{n}(1)=\frac{n}{1+n^{2}}$ and the sequence $\left(f_{n}\right)_{n}$ is uniformly convergent on the interval [1,2].
3. Course
4. On the interval $[0,1], 0 \leq f_{n}(x) \leq \frac{1}{2}$, which is integrable on $[0,1]$, then by dominate convergence theorem $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n x}{1+n^{2} x^{2}} d x=0$.

Question 3 :

1. Since the sequence $\left(\frac{1}{k+x^{2}}\right)_{n}$ is decreasing then $\left|\sum_{k=n}^{m} \frac{(-1)^{k}}{k+x^{2}}\right| \leq \frac{1}{n+x^{2}}$, for all $n \leq m \in \mathbb{N}$ and $x \in \mathbb{R}$.
2. (a) $\sup _{x \in \mathbb{R}}\left|\sum_{k=n}^{m} \frac{(-1)^{k}}{k+x^{2}}\right| \leq \frac{1}{n}$, then the series $\sum_{n \geq 1} f_{n}(x)$ is uniformly convergent on \mathbb{R}.
(b) Since the functions $f_{n}(x)=\frac{(-1)^{n}}{n+x^{2}}$ are continuous and the convergence of the series $\sum_{n \geq 1} f_{n}(x)$ is uniform, then the function f is continuous on \mathbb{R}.
(c) Since the convergence of the series $\sum_{n \geq 1} f_{n}(x)$ is uniform on \mathbb{R} and $\lim _{x \rightarrow+\infty} \sum_{k=0}^{n} \frac{(-1)^{k}}{k+x^{2}}=0$, then $\lim _{x \rightarrow+\infty} f(x)=0$.

Question 4 :

1. A subset E of \mathbb{R} is said to be measurable with respect to the Lebesgue outer measure m^{*} if

$$
m^{*}(X)=m^{*}(X \cap E)+m^{*}\left(X \cap E^{c}\right), \quad \forall X \subset \mathbb{R}
$$

2. If $m^{*}(E)=0$, then for $X \subset \mathbb{R}, m^{*}(X \cap E)=0$ and $m^{*}\left(X \cap E^{c}\right) \leq m^{*}(X)$. Then $m^{*}(X) \geq m^{*}(X \cap E)+m^{*}\left(X \cap E^{c}\right)$. Moreover as m^{*} is an outer measure, $m^{*}(X) \leq m^{*}(X \cap E)+m^{*}\left(X \cap E^{c}\right)$. Then $m^{*}(X)=m^{*}(X \cap$ $E)+m^{*}\left(X \cap E^{c}\right)$ and E is measurable.
3. As $m^{*}(\{a\})=0$ for all $a \in \mathbb{R}$, then for any countable set E in \mathbb{R}, $m^{*}(E)=0$.
4. As $m^{*}([0,1])=1$, then $[0,1]$ is not countable.

Question 5 :

1. For $a>0,\left(\frac{1}{f}\right)^{-1}([a,+\infty])=f^{-1}\left(\left[0, \frac{1}{a}\right]\right)$, which is measurable. If $a=$ $0,\left(\frac{1}{f}\right)^{-1}([0,+\infty])=f^{-1}([0,+\infty])$, which is measurable. For $a<0$, $\left(\frac{1}{f}\right)^{-1}([a,+\infty])=f^{-1}((0,+\infty])$, which is measurable.
2. Course.
3. $\lim _{n \rightarrow+\infty} \chi_{[0, n]}\left(1+\frac{x}{n}\right)^{n} e^{-2 x}=e^{-x} . \quad \chi_{[0, n]}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} \leq e^{-x}$. Then by dominate convergence theorem,

$$
\lim _{n \rightarrow+\infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x=\int_{0}^{+\infty} e^{-x} d x=1
$$

4. $\frac{(x \ln x)^{2}}{1+x^{2}}=\sum_{n=0}^{+\infty}(-1)^{n} x^{2 n+2} \ln ^{2} x,\left|\sum_{k=0}^{n}(-1)^{k} x^{2 k+2} \ln ^{2} x\right| \leq x^{2} \ln ^{2} x$ which is integrable on $[0,1]$. Then

$$
\begin{aligned}
\int_{0}^{1} \frac{(x \ln x)^{2}}{1+x^{2}} & =\sum_{n=0}^{+\infty}(-1)^{n} \int_{0}^{1} x^{2 n+2} \ln ^{2} x d x \\
& =2 \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{(2 n+1)^{3}}
\end{aligned}
$$

