Question 1 :

1. If $f:[a, b] \longrightarrow \mathbb{R}$ is a differentiable function, then f is continuous and f is Riemann integrable on $[a, b]$.
2. The function $f=1$ on $\mathbb{Q} \cap[a, b]$ and $f=-1$ on $\mathbb{Q}^{c} \cap[a, b]$ is not Riemann integrable on $[a, b]$, but $|f|=1$ is Riemann integrable on $[a, b]$.
3. Let f a non-Riemann integrable function on $[a, b]$ and $g=-f$. Then $f+g=0$ is Riemann integrable on $[a, b]$.
4. Any increasing function $f:[a, b] \longrightarrow \mathbb{R}$ is Riemann integrable. If $\sigma=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$, then $0 \leq U(f, \sigma)-L(f, \sigma)=\sum_{k=0}^{n-1}\left(x_{k+1}-\right.$ $\left.x_{k}\right)\left(f\left(x_{k+1}\right)-f\left(x_{k}\right)\right) \leq\|\sigma\|(f(b)-f(a)$. Then f is Riemann integrable on $[a, b]$.

Question 2 :

1. (a) Prove that $\int_{a}^{b} f(x) d x=0=\int_{a} x f(t) d t+\int_{x}^{b} f(t) d t=2 \int_{a} x f(t) d t$.

Then $\int_{a} x f(t) d t=0$ for all $x \in[a, b]$.
(b) If f is continuous, $\frac{d}{d x} \int_{a} x f(t) d t=f(x)=0$ then $f=0$ on $[a, b]$.

Question 3 :

1. $\frac{1}{x^{\frac{1}{3}}(1+x)} \leq \frac{1}{x^{\frac{1}{3}}}$ and $\frac{1}{x^{\frac{1}{3}}(1+x)} \leq \frac{1}{x^{\frac{4}{3}}}$. Then the integral $\int_{0}^{+\infty} \frac{1}{x^{\frac{1}{3}}(1+x)} d x$ is convergent.
2. $\lim _{x \rightarrow-\infty} x^{2} e^{x^{3}}=0$, then the integral $\int_{-\infty}^{-1} e^{x^{3}} d x$ is convergent.

Question 4 :

1. $\left|\sin \left(\frac{x}{n^{2}}\right)\right| \leq \frac{|x|}{n^{2}}$, then the series $\sum_{n \geq 1} \sin \left(\frac{x}{n^{2}}\right)$ on \mathbb{R}. $\left.\sup _{x \in \mathbb{R}}| | \sin \left(\frac{x}{n^{2}}\right) \right\rvert\,=1$, then the series $\sum_{n \geq 1} \sin \left(\frac{x}{n^{2}}\right)$ is not uniformly convergent on \mathbb{R}.
2. (a) $\lim _{n \rightarrow+\infty} f_{n}(x)=0$ for $x \neq 0$ and $f_{n}(0)=0$.
(b) $\sup _{x \in[0,+\infty)}\left|f_{n}(x)\right|=f_{n}\left(\frac{1}{\sqrt{n}}\right)$. Then the sequence converges uniformly on $[0,+\infty)$.
(c) As $\left|f_{n}(x)\right| \leq \frac{1}{2 n^{\frac{3}{2}}}$, then the series $\sum_{n \geq 1} f_{n}$ on $[0,+\infty)$ is uniformly convergent ob \mathbb{R}.

Question 5 :

1. $\mu^{*}(A)=\inf \left\{\sum_{n=1}^{+\infty} \mathscr{L}\left(I_{n}\right): I_{n}\right.$ open, $\left.A \subset \cup_{n=1}^{+\infty} I_{n}\right\}$.
2. We say that a function $f: \Omega \longrightarrow \mathbb{R}$ is measurable if $f^{-1}(A) \in \mathscr{B}$ for any Borel set $A,\left(A \in \mathscr{B}_{\mathbb{R}}\right)$. This is equivalent that $f^{-1}[a,+\infty[\in \mathscr{B}$ for every $a \in \mathbb{R}$.
3. $\chi_{E}^{-1}\left[a,+\infty\left[=\emptyset\right.\right.$ if $a>1$. $\chi_{E}^{-1}[a,+\infty[=E$ if $a \leq 1$. Then E of \mathbb{R} is measurable if and only if the function χ_{E} is measurable.
4. If E is a null set and X a subset of $\mathbb{R} . m^{*}(X \cap E) \leq m^{*}(E)=0$ and $m^{*}\left(X \cap E^{c}\right) \leq m^{*}(X)$. Then $m^{*}(X) \geq m^{*}\left(X \cap E^{c}\right)+m^{*}(X \cap E)$. Then E is measurable. $\left|\int_{E} f(x) d m(x)\right| \leq \infty m(E)=0$ for all measurable function f on \mathbb{R}.

Question 6 :

1. The monotone convergence theorem:

Let $\left(f_{n}\right)_{n}$ be an increasing sequence of non-negative measurable functions on Ω, then

$$
\int_{\Omega} \lim _{n \rightarrow+\infty} f_{n}(x) d \lambda(x)=\lim _{n \rightarrow+\infty} \int_{\Omega} f_{n}(x) d \lambda(x)
$$

The Dominate Convergence Theorem

Let $\left(f_{n}\right)_{n} \in \mathscr{M}(\Omega)$ such that
(a) $\left(f_{n}\right)_{n}$ converges a.e. to a function f defined a.e.
(b) There exists a non negative integrable function g so that: $\left|f_{n}\right| \leq g$ a.e. for every n.

Then the sequence $\left(f_{n}\right)_{n}$ and the function f is integrable and

$$
\int_{\Omega} f(x) d \lambda(x)=\lim _{n \rightarrow+\infty} \int_{\Omega} f_{n}(x) d \lambda(x)
$$

2. $\operatorname{If} f_{n}(x)=\frac{n x}{1+n^{3} x^{3}}$, then $f_{n}(x) \leq f_{n}\left(\frac{1}{2^{\frac{1}{3}} n}=\leq 1\right.$. Then $\lim _{n \longrightarrow+\infty} \int_{0}^{1} \frac{n x}{1+n^{3} x^{3}} d x=$ 0.
