King Saud University Faculty of Sciences Department of Mathematics

Final Examination Math 481 Semester II - 1443 Time: 3H

Question 1 :

1. Find the following limit
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{\sqrt{4n^2 - k^2}}$$

2. Study the convergence of the following improper integrals

(a)
$$\int_0^3 \frac{e^x}{\sqrt{3-x}} dx$$
 (b) $\int_{-\infty}^{-1} e^{x^3} dx$

Question 2 :

- 1. State the definition of the uniform convergence of a sequence of functions $(f_n)_n$ on an interval I.
- 2. Study the pointwise convergence of the sequence $(f_n)_n$ defined by $f_n(x) = \frac{3^n x}{1 + n3^n x^2}$ on the interval [0, 1].

3. Compute
$$\lim_{n \to +\infty} \int_0^1 f_n(x) dx$$
 and $\int_0^1 \lim_{n \to +\infty} f_n(x) dx$.

Question 3 :

Study the absolute and the uniform convergence of the series $\sum_{n\geq 0} \frac{(-1)^n x}{(1+x^2)^n}$ on $[0, +\infty)$. Question 4 :

- 1. State the definition of a σ -algebra on \mathbb{R} .
- 2. State the theorem of monotone convergence and the dominate convergence theorem

3. Compute the following limit
$$\lim_{n \to +\infty} \int_0^1 \frac{nx}{1+n^2x^2} dx$$
.

Question 5 :

- 1. Prove that the Borel σ -algebra is generated by the closed intervals [a, b], with $a, b \in \mathbb{R}$.
- 2. (a) State the definition of the Lebesgue outer measure m^* .
 - (b) Prove that m^* is monotonic.
 - (c) Compute $m^*(\mathbb{Q}^c \cap [0,2])$.

3. Compute
$$\int_{[0,2]} f(x) dx$$
 if $f(x) = \begin{cases} x & x \in \mathbb{Q} \cap [0,2] \\ \\ 3 & x \in \mathbb{Q}^c \cap [0,2] \end{cases}$.