King Saud University
Faculty of Sciences

Department of Mathematics

Final Examination	Math 481	Semester II - 1443
	Time: 3 H	

Question 1 :

1. Find the following limit $\lim _{n \longrightarrow+\infty} \sum_{k=1}^{n} \frac{1}{\sqrt{4 n^{2}-k^{2}}}$.
2. Study the convergence of the following improper integrals
(a) $\int_{0}^{3} \frac{e^{x}}{\sqrt{3-x}} d x$
(b) $\int_{-\infty}^{-1} e^{x^{3}} d x$

Question 2 :

1. State the definition of the uniform convergence of a sequence of functions $\left(f_{n}\right)_{n}$ on an interval I.
2. Study the pointwise convergence of the sequence $\left(f_{n}\right)_{n}$ defined by $f_{n}(x)=\frac{3^{n} x}{1+n 3^{n} x^{2}}$ on the interval $[0,1]$.
3. Compute $\lim _{n \rightarrow+\infty} \int_{0}^{1} f_{n}(x) d x$ and $\int_{0}^{1} \lim _{n \rightarrow+\infty} f_{n}(x) d x$.

Question 3 :

Study the absolute and the uniform convergence of the series $\sum_{n \geq 0} \frac{(-1)^{n} x}{\left(1+x^{2}\right)^{n}}$ on $[0,+\infty)$.
Question 4 :

1. State the definition of a σ-algebra on \mathbb{R}.
2. State the theorem of monotone convergence and the dominate convergence theorem
3. Compute the following limit $\lim _{n \longrightarrow+\infty} \int_{0}^{1} \frac{n x}{1+n^{2} x^{2}} d x$.

Question 5 :

1. Prove that the Borel σ-algebra is generated by the closed intervals $[a, b]$, with $a, b \in \mathbb{R}$.
2. (a) State the definition of the Lebesgue outer measure m^{*}.
(b) Prove that m^{*} is monotonic.
(c) Compute $m^{*}\left(\mathbb{Q}^{c} \cap[0,2]\right)$.
3. Compute $\int_{[0,2]} f(x) d x$ if $f(x)=\left\{\begin{array}{ll}x & x \in \mathbb{Q} \cap[0,2] \\ 3 & x \in \mathbb{Q}^{c} \cap[0,2]\end{array}\right.$.
