

King Saud University
Faculty of Sciences
Department of Mathematics

Final Examination Math 244 Semester II - 1445 Time: 3H

Name: _____

ID:

Section

Signature

Note: • Attempt all the five questions. Scientific calculators are not allowed.
• Please fill in the above columns and give your answer to Question 1 on the following table.

Question 1 : [Marks: 10×1]: Choose the correct answer:

viii) Consider the vector space \mathcal{P}_n of real polynomials of degree $\leq n$. If the linear transformation $T: \mathcal{P}_2 \rightarrow \mathcal{P}_1$ is given by $T(a_0 + a_1x + a_2x^2) = a_0 + a_1 + a_2x$, then $\ker(T)$ equals:

a) $\{0\}$ b) $\text{span}\{-1 + x\}$ c) $\text{span}\{-1, x\}$ d) \mathcal{P}_2

ix) Consider the basis $\{(1, 2), (3, 0)\}$ for the space \mathbb{R}^2 . If the linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is given by $T(1, 2) = (1, 5)$ and $T(3, 0) = (-4, 6)$, then $T(7, 8)$ equals:

a) $(13, 26)$ b) $(-15, 35)$ c) $(-3, 11)$ d) $(0, 26)$

x) If $A = \begin{pmatrix} 2 & 0 \\ 3 & -1 \end{pmatrix}$, then the eigenvalues of A^4 are:

a) 2,16 b) -1,8 c) 1,16 d) 4,16.

Question 2 : [Marks: 2+2+3]

a) Compute $P(A)$, if P is the polynomial $P(x) = x^3 - 3x^2 - 4x + 13$ and $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.

b) Show that $\begin{vmatrix} 1 & 2 & 1 \\ x+1 & 2x+1 & 2x+2 \\ x+1 & x+1 & 2x+1 \end{vmatrix}$ is constant, for all $x \in \mathbb{R}$.

c) Let A be $m \times n$ matrix and let B and C be linearly independent vectors in \mathbb{R}^n . Suppose X_1 is a solution of $AX = B$ and X_2 is a solution of $AX = C$. Then show that X_1 and X_2 are linearly independent in \mathbb{R}^n .

Explain why $\text{rank}(A) \geq 2$.

Question 3 : [Marks: 2+4+2]

Consider the matrix $A = \begin{pmatrix} 1 & -1 & 0 & -1 \\ -1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 3 \\ 1 & 0 & 1 & 2 \end{pmatrix}$.

a) Compute the RREF of A .

b) Find a basis B of the column space $\text{Col}(A)$ of the matrix A and a basis C of the null space $N(A)$ of the matrix A .

c) Find $\text{rank}(A)$ and $\text{Nullity}(A)$.

Question 4 : [Marks: 3+2+3]

a) Consider the vector space \mathcal{P}_2 of real polynomials of degree ≤ 2 equipped with the inner product:

$$\langle P(x), Q(x) \rangle = P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1), \quad \forall P, Q \in \mathcal{P}_2.$$

Explain why $\{1, x, x^2\}$ is not orthogonal. Apply the Gram-Schmidt process to transform the basis $\{1, x, x^2\}$ of \mathcal{P}_2 to an orthogonal basis.

b) Let $S = \{u, v, w\}$ be any orthonormal subset of the above inner product space \mathcal{P}_2 . Show that S is a basis for \mathcal{P}_2 .

c) Consider the basis $\{v_1 = (2, 2, 1), v_2 = (2, 1, 0), v_3 = (1, 0, 0)\}$ for the vector space \mathbb{R}^3 . Let the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be given by: $T(v_1) = (3, -1)$, $T(v_2) = (6, 2)$ and $T(v_3) = (4, 3)$. Then find $\text{rank}(T)$ and $\text{nullity}(T)$.

Question 5 : [Marks: 3+4]

a) Let A, B and C be square matrices of size n , where C is invertible satisfying $B = C^{-1}AC$. If λ is an eigenvalue of A and X is its corresponding eigenvector, then find a nonzero vector $Y \in \mathbb{R}^3$ such that $BY = \lambda Y$.

b) Show that the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 1 \end{pmatrix}$ is diagonalizable and find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

.....
.....
.....
.....
.....
.....
.....
.....