Math 228
Trimester 1 (1444)
Time: 3 Hours

The Examination contains 2 pages

Question 1: $(3+3+3)$

1. Evaluate $\int_{-2}^{-1} \int_{0}^{3}\left(4 x y^{2}+y^{2}\right) d x d y$.
2. Evaluate $\iint_{R}\left(x^{3}+4 y\right) d A$ where R is the region in the $x y$-plane bounded by the graphs of the equations $y=x^{2}$ and $y=2 x$.
3. Us polar coordinate to evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$.

Question 2: $(3+3+3)$

1. Evaluate $\iiint_{E}\left(x y+z^{2}\right) d V$, where $E=\{(x, y, z), 0 \leq x \leq 2,0 \leq y \leq 4,0 \leq z \leq 3\}$.
2. Evaluate $\iiint_{Q} d V$, where $Q=\left\{(x, y, z),-2 \leq x \leq 2, x^{2} \leq y \leq 4,0 \leq z \leq 4-y\right\}$.
3. Using spherical coordinates, evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where E lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.

Question 3: $(2+2+2+2)$

1. Find the partial sum S_{n} of the arithmetic sequence that satisfies the given conditions, $a=-2, d=23$ and $n=25$.
2. Find the partial sum S_{n} of the geometric sequence that satisfies the given conditions, $a=5, r=2$ and $n=6$.
3. Decide whether the sequence of general term $a_{n}=2\left(-\frac{1}{3}\right)^{n}$ converges or diverges. Justify you answer.
4. Use the Binomial theorem to expand the expression $(x+2 y)^{4}$.

Question 4: $(2+(2+2+2)+3+3)$

1. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$.
2. Determine whether the following series converges or diverges. Justify you answer.
(a) $\sum_{n=1}^{\infty} \frac{2 n}{3 n+5}$.
(b) $\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)$.
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3+5 n}$.
3. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{5 n+1}$ is absolutely convergent, conditionally convergent, or divergent. Justify your answer.
4. Find the interval of convergence and radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^{n}}{2 n-1}$.
5. Find the power series representation of $f(x)=\frac{e^{2 x}-1}{x}$.
