King Saud University	College of Se	ciences Dep	artment of Mathematics
Final Examination	Math 228	Trimester 1 (1444)	4) Time: 3 Hours

The Examination contains 2 pages

- Question 1: (3+3+3)1. Evaluate $\int_{-2}^{-1} \int_{0}^{3} (4xy^2 + y^2) dx dy$. 2. Evaluate $\iint_{R} (x^3 + 4y) dA$ where R is the region in the xy-plane bounded by the graphs of the equations $y = x^2$ and y = 2x.
 - 3. Us polar coordinate to evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{x^2 + y^2} \, dy \, dx$.

Question 2: (3+3+3)

1. Evaluate $\iiint_E (xy + z^2) dV$, where $E = \{(x, y, z), 0 \le x \le 2, 0 \le y \le 4, 0 \le z \le 3\}$. 2. Evaluate $\iiint_Q dV$, where $Q = \{(x, y, z), -2 \le x \le 2, x^2 \le y \le 4, 0 \le z \le 4 - y\}$.

3. Using spherical coordinates, evaluate $\iiint_E \sqrt{x^2 + y^2 + z^2} \, dV$, where *E* lies above the cone $z = \sqrt{x^2 + y^2}$ and between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$.

Question 3: (2+2+2+2)

- 1. Find the partial sum S_n of the arithmetic sequence that satisfies the given conditions, a = -2, d = 23 and n = 25.
- 2. Find the partial sum S_n of the geometric sequence that satisfies the given conditions, a = 5, r = 2 and n = 6.

3. Decide whether the sequence of general term $a_n = 2\left(-\frac{1}{3}\right)^n$ converges or diverges. Justify you answer.

4. Use the Binomial theorem to expand the expression $(x + 2y)^4$.

Question 4: (2+(2+2+2)+3+3)

- 1. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$.
- 2. Determine whether the following series converges or diverges. Justify you answer.

(a)
$$\sum_{n=1}^{\infty} \frac{2n}{3n+5}$$
.
(b) $\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right)$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{3+5n}$.

- 3. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{5n+1}$ is absolutely convergent, conditionally convergent, or divergent. Justify your answer.
- 4. Find the interval of convergence and radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^n}{2n-1}$. 5. Find the power series representation of $f(x) = \frac{e^{2x} - 1}{x}$.