King Saud University	College of Science	es I	Department of	f Mathematics
Final Examination	Math 228	Semester 2 (14)	43)	Time: 3 Hours

The Examination contains 2 pages

Question 1: (3+3+3)

- 1. Find the area A of the region in the xy-plane bounded by the graphs $y = 4x x^2$ and y = -x.
- 2. Evaluate the integral $\int_0^2 \int_0^y y^4 \cos(xy^2) dx dy$. 3. Evaluate the integral $\iint_D e^{x^2+y^2} dA$, where D is the disc of center (0,0) and radius 2.

Question 2: (3+3+3+3)

- 1. Find the volume of the tetrahedron bounded by the coordinates x = 0, y = 0, z = 0and the plane x + y + z = 1.
- 2. Evaluate the integral by changing to spherical coordinates

$$\int_0^2 \int_0^{\sqrt{4-y^2}} \int_0^{\sqrt{4-x^2-y^2}} \sqrt{x^2+y^2+z^2} \, dz \, dx \, dy$$

- 3. Use cylindrical coordinates to evaluate $\iiint_Q \sqrt{x^2 + y^2} dV$, where Q is the solid bounded by the paraboloid $z = 1 (x^2 + y^2)$ and the xy-plane.
- 4. Find the volume of the region that lies between two spheres $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 + z^2 = 4$.

Question 3: (3+2+2+3+3)

- 1. Find the sum of the series $\sum_{n=1}^{\infty} \left[\frac{1}{(n+3)(n+4)} + \frac{1}{2^n} \right].$
- 2. Determine whether the series $\sum_{n=1}^{\infty} \frac{100^n}{n!}$ converges or diverges. Justify you answer.
- 3. Use integral test to determine whether the series $\sum_{n=2}^{\infty} \frac{\ln(n)}{n}$ converges or diverges.
- 4. Determine whether the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2+4}$ is absolutely convergent, conditionally convergent, or divergent.

5. Find the interval of convergence and radius of convergence of the power series $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n4^n}.$

Question 4: (3+3)

- 1. Find the power series representation of $f(x) = \ln(1+x)$, |x| < 1, and use first three non zeros terms to find the value of $\ln(1.2)$.
- 2. Gives the Maclaurin's series for the function $f(x) = \cos x$ and prove that it represents $\cos x$ for all x. hence approximate the integral $\int_0^1 x \cos(x^3) dx$ up to four decimal places by using the first three non-zeros terms.