| King Saud University | College of Sciences | | Department of Mathematics |
| :--- | :---: | :---: | :---: | :---: |
| Final Examination | Math 228 | Semester $2(1443)$ | Time: 3 Hours |

The Examination contains 2 pages

Question 1: $(3+3+3)$

1. Find the area A of the region in the $x y$-plane bounded by the graphs $y=4 x-x^{2}$ and $y=-x$.
2. Evaluate the integral $\int_{0}^{2} \int_{0}^{y} y^{4} \cos \left(x y^{2}\right) d x d y$.
3. Evaluate the integral $\iint_{D} e^{x^{2}+y^{2}} d A$, where D is the disc of center $(0,0)$ and radius 2.

Question 2: $(3+3+3+3)$

1. Find the volume of the tetrahedron bounded by the coordinates $x=0, y=0, z=0$ and the plane $x+y+z=1$.
2. Evaluate the integral by changing to spherical coordinates

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y
$$

3. Use cylindrical coordinates to evaluate $\iiint_{Q} \sqrt{x^{2}+y^{2}} d V$, where Q is the solid bounded by the paraboloid $z=1-\left(x^{2}+y^{2}\right)$ and the $x y$-plane.
4. Find the volume of the region that lies between two spheres $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}+z^{2}=4$.

Question 3: $(3+2+2+3+3)$

1. Find the sum of the series $\sum_{n=1}^{\infty}\left[\frac{1}{(n+3)(n+4)}+\frac{1}{2^{n}}\right]$.
2. Determine whether the series $\sum_{n=1}^{\infty} \frac{100^{n}}{n!}$ converges or diverges. Justify you answer.
3. Use integral test to determine whether the series $\sum_{n=2}^{\infty} \frac{\ln (n)}{n}$ converges or diverges.
4. Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{2}+4}$ is absolutely convergent, conditionally convergent, or divergent.
5. Find the interval of convergence and radius of convergence of the power series $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n 4^{n}}$.

Question 4: (3+3)

1. Find the power series representation of $f(x)=\ln (1+x),|x|<1$, and use first three non zeros terms to find the value of $\ln (1.2)$.
2. Gives the Maclaurin's series for the function $f(x)=\cos x$ and prove that it represents $\cos x$ for all x. hence approximate the integral $\int_{0}^{1} x \cos \left(x^{3}\right) d x$ up to four decimal places by using the first three non-zeros terms.
