The final examination First semester, 1431H

King Saud university Math 244

Time: 3 hours

.....

Question No.1

- (a) Determine whether the following statements are true or false, and justify your answer:
 - (1) The set of vectors $\{v_1 = (-2,0,1), v_2 = (3,2,5), v_3 = (6,-1,1), v_4 = (7,0,-2)\}$ is a basis of \mathbb{R}^3 .
 - (2) If $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection on the X-axis and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection on the Y-axis, then $T_1 \circ T_2 = T_2 \circ T_1$.
 - (3) Whenever 2 and 4 are eigenvalues of a matrix A, then the eigenvalues of A^3 are 6 and 12.
 - (4) If Ax = b, where $A = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ 5 \end{pmatrix}$, then x equals $\begin{pmatrix} -2 \\ 5 \end{pmatrix}$.
 - (5) If B is 5×7 matrix and Rank(B) = 3, then rank (B^T) equals to 3.
 - (6) If u = (-2, 3, 1, 4) and v = (1, 2, 0, -1) two vectors in \mathbb{R}^4 , then u and v are orthogonal.
- (b) Choose the correct answer:
 - (1) For any two invertible matrices A and B, $(AB^{-1})^{-1}$ is equal to

$$(i)A^{-1}B$$
 $(ii)B^{-1}A$ $(iii)AB^{-1}$ $(v)BA^{-1}$

(2) If
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 6 \end{pmatrix}$$
, then A^{-2} is equal to

$$(i) \left(\begin{array}{cc} -3 & 2 \\ 1 & -\frac{1}{2} \end{array} \right)$$

$$(i)\begin{pmatrix} -3 & 2\\ 1 & -\frac{1}{2} \end{pmatrix} \qquad (ii)\begin{pmatrix} 11 & -7\\ -\frac{7}{2} & \frac{9}{4} \end{pmatrix} \qquad (iii)\begin{pmatrix} 6 & -4\\ -2 & 1 \end{pmatrix}$$

$$(iii)$$
 $\begin{pmatrix} 6 & -4 \\ -2 & 1 \end{pmatrix}$

(3) If $u = (2, \frac{-3}{2}, 0, \frac{1}{2}, -\frac{1}{2}, 3)$, then $\| -2u \|$ equals:

$$(ii)\frac{3}{2}$$
 $(iii)1$

- (v) None of these
- (4) The standard matrix of the orthogonal projection on the YZ- plane is

$$(i) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

$$(ii) \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

$$(i) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(ii) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(iii) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(5) If
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$
, then the distinct eigenvalues of A are

(i)2 and 4

(ii)0 and 2

(iii)0 and 4

(v) None of these.

Question No.2

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (x - 2y + 2z, 2x + y + z, x + y).

- (a) Find the standard matrix of T.
- (b) Show that T is one-to-one.
- (c) Find $T^{-1}(w_1, w_2, w_3)$.

Question No.3

(a) Find the eigenvalues of A^5 for

$$A = \left(\begin{array}{cccc} 1 & 3 & 7 & 11 \\ 0 & \frac{1}{2} & 3 & 8 \\ 0 & O & 0 & 4 \\ 0 & 0 & 0 & 2 \end{array}\right).$$

Is A^5 invertible? why?

(b) If
$$A = \begin{pmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{pmatrix}$$
, then

- (1) Find the rank and nullity of A.
- (2) Find a basis of the null space of A.

.....

Question No.4

(a) Show that the following set of vectors is a basis for M_{22} :

$$\left\{ \begin{pmatrix} 3 & 6 \\ 3 & -6 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -8 \\ -12 & -4 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \right\}.$$

(b) Solve the following linear system by Gauss-Jordan elimination:

$$x-y+2z-w=-1, 2x+y-2z-2w=-2, -x+2y-4z+w=1, 3x-3w=-3.$$

.....

Good luck