College of Sciences
 Department of Mathematics

Final Exam

Math 550

Exercise 1. State whether the following are true or false. Justify your answer.

1. Let $\mathrm{p}>0$. The application $N: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, defined by

$$
N(x)=\left(\sum_{k=1}^{n} x_{k}^{p}\right)^{\frac{1}{p}}
$$

is a norm on \mathbb{R}^{n}.
2. Let $n>2$. Every matrix norm N is a sub-multiplicative norm, that is:

$$
N(A B) \leq N(A) N(B), \quad \forall A, B \in \mathbb{R}^{n \times n}
$$

3. The floating-point form of $x=-0,00456296748$ using five-digit rounding is $f l(x)=-0,00456$.
4. If the guess (initial point) is close enough to a root of the function, then Newton's method converge quadratically.
5. The graphical interpretation of the Secant method is as follows : Starting with the initial approximation x_{0}, the approximation x_{1} is the x-intercept of the tangent line to the graph of f at $\left(x_{0}, f\left(x_{0}\right)\right)$. The approximation x_{2} is the x-intercept of the tangent line to the graph of f at $\left(x_{1}, f\left(x_{1}\right)\right)$ and so on.

Exercise 2.

Use three steps of the Newton's method to approximate the roots of the following system

$$
\left\{\begin{array}{l}
x+e^{-x}+y^{3}=0, \\
x^{2}+2 x y-y^{2}+\tan x=0
\end{array}\right.
$$

by taking initial guess $x_{0}=3, y_{0}=-1.5$.

Exercise 3.

1. Show that the equation $e^{x^{2}}=4 x^{2}$ has a solution α in the interval $[0,1]$.
2. Use three iterations of the bisection method in the interval [0,1$]$ and Newton's method with initial point $x_{0}=$ 0.5 , to approximate the zero of the function $f(x)=e^{x^{2}}-4 x^{2}$.
3. Prove that the Newton's method converge quadratically to α.

Exercise 4. Let $P(x)=x^{5}-5 x^{3}+4 x$.

1. Find the Sturm sequence of P.
2. Determine the number of roots of P in the interval $[-3,3]$.
3. Determine the number of positive roots of P.
