[Solution Key]

King Saud University College of Sciences Department of Mathematics

Semester 451 / Final Exam / MATH-244 (Linear Algebra)

Max. Marks: 40			`	Time: 3 hours		
Name:		ID:	Section:	Signature:		
Note: Att	empt all the five qu	estions. Scientij	fic calculators are n	ot allowed!		
Question	1 [Marks:10 ×1]:					
Cho	ose the correct answ	er:				
(i)		1 0 01	ntisfies the condition –	$A = A^t$ (here, A^t denote	es the	
tra	anspose of A), then δ : (a) 0	•	(c) -2	(4) 1		
(ii)		3 matrices with		-1 = -54, then B is	equal to:	
(iii)	If $ 3A = -2$, then	the reduced row	echelon form of A mus	t be equal to:		
	(a) 3 I	(b) 2 I	(c) $\frac{1}{3}$ I	(d) 🗸 I.		
(iv)	Let F denote the se invertible and $X \in \mathbb{R}$ (a) \mathbb{R}^3	³ . Then, F is equa	al to:	$AX = 0$, where the ma $(d) \mathbb{R}^3 - \{(0,0)\}$		
(v)	If the vectors (1,2,		1, -4, h) are linearly d	ependent in \mathbb{R}^3 , then h (d) 3		
(vi)			2)}, then $dim(W)$ is eq	ual to: (d) ✓ 1.		
(vii)	If $B = \{(-2,4), (3, \text{ vector } [(1,3)]_B \text{ is expected} \}$		ed basis of the vector s	pace \mathbb{R}^2 , then the coord	inate	
	(a) $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	(b) $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	(c) \checkmark $\begin{bmatrix} 7 \\ 5 \end{bmatrix}$	(d) $\begin{bmatrix} 5 \\ 7 \end{bmatrix}$.		
(viii)	$\langle p,q \rangle = a_0 b_0 + a_1 k$ the distance betwee	$a_1 + a_2 b_2$ for all n the polynomials	$p = a_0 + a_1 x + a_2 x$ s 2 - 3x ² and 1 - x			
(ix)		he linear transfo		f(p(x)) = xp(x), the	n which	
		(a) $1 + x^3$	(c) $\checkmark 3x - x^2$	(d) $3x -$	x^4 .	
(x)	If $A = \begin{bmatrix} 0 & -1 \\ -4 & 0 \end{bmatrix}$, the	n the matrix A is:	()	(-) -20		
	(a) ✓ diagonalizabl	e (b) symmetri	c (c) not diagon	alizable (d) not invertib	ble.	

Question 2 [Marks: 2+3+1]:: Let A be a matrix with $RREF(A) = \begin{bmatrix} 1 & 1 & 0 & -3 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. Then:

- (a) Find rank(A) and nullity(A).
- (b) Find a basis for the row space row(A) and the null space N(A).
- (c) Show whether or not the linear system AX = b has a solution for all $b \in \mathbb{R}^5$.

Solution: (a) rank(A) = the number of nonzero rows in <math>RREF(A) = 4.

Since rank(A) + nullity(A) = the number of columns in A, we have nullity(A) = 6 - 4 = 2..

(b) A basis for row(A) consists of the nonzero rows in RREF(A):

 $\{(1,1,0,-3,0,0),(0,0,1,1,0,0),(0,0,0,0,1,0),(0,0,0,0,0,1)\}..$

Since dim N(A) = 2 and since (3,0,-1,1,0,0), $(0,3,-1,1,0,0) \in N(A)$ are linearly independent, $\{(3,0,-1,1,0,0), (0,3,-1,1,0,0)\}$ is a basis for N(A). $[\{(3,0,-1,1,0,0), (-1,1,0,0,0,0)\}$ is another basis for N(A).

(c) Since $dim \, col(A) = rank(A) = 4 < 5 = dim \mathbb{R}^5$, the columns of A do not span \mathbb{R}^5 . Hence, there exists at least on $b \in \mathbb{R}^5$ for which AX = b has no solution.

Question 3 [Marks: 4+5]:

- (a) Let $A = \{(1,0,3), (1,1,0), (2,2,-3)\}$ and $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ be given ordered bases for the vector space \mathbb{R}^3 . Then construct the change of basis matrix ${}_{A}\mathbf{P}_{B}$ and then use it to find the coordinate vector $[v]_{A}$ of v = (3,-2,1).
- (b) Let $E = \{u_1 = (1,1,1), u_2 = (-1,1,0), u_3 = (1,2,1)\}$. Find an orthonormal basis for the Euclidean space \mathbb{R}^3 by applying the Gram-Schmidt algorithm on E.

Solution: (a) $(1,0,0) = \alpha(1,0,3) + \beta(1,1,0) + \gamma(2,2,-3) \Rightarrow \alpha = 1 = \gamma, \beta = -2 \text{ so that } [(1,0,0)]_A = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$. Similarly,

$$[(0,1,0)]_A = \begin{bmatrix} -1\\3\\-1 \end{bmatrix} \text{ and } [(0,0,1)]_A = \begin{bmatrix} 0\\2/3\\-1/3 \end{bmatrix}. \text{ Hence, } {}_A\mathbf{P}_B = \begin{bmatrix} 1 & -1 & 0\\-2 & 3 & \frac{2}{3}\\1 & -1 & -\frac{1}{3} \end{bmatrix},$$

Next,
$$[v]_A = {}_A \mathbf{P}_B [v]_B = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & \frac{2}{3} \\ 1 & -1 & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{-\frac{34}{3}} \\ \frac{14}{3} \end{bmatrix}.$$

(b) $v_1 = u_1 = (1,1,1); \ v_2 = u_2 - \frac{\langle u_2, u_1 \rangle}{||u_1||^2} u_1 = u_2 - \frac{0}{||u_1||^2} u_1 = (-1,1,0) \text{ and } \ v_3 = u_3 - \frac{\langle u_3, u_1 \rangle}{||u_1||^2} u_1 - \frac{\langle u_3, u_2 \rangle}{||u_2||^2} u_2 = (\frac{1}{6}, \frac{1}{6}, \frac{-1}{3}).$ Hence, $w_1 = \frac{1}{||v_1||} v_1 = \frac{1}{\sqrt{3}} (1,1,1), w_2 = \frac{1}{||v_2||} v_2 = \frac{1}{\sqrt{2}} (-1,1,0), w_3 = \frac{1}{||v_3||} v_3 = \sqrt{6} \left(\frac{1}{6}, \frac{1}{6}, \frac{-1}{3}\right).$

Question 4: [Marks: 2+3+2]

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by:

$$T(1,0,3) = (2,-1,3), T(0,1,0) = (1,0,2), \text{ and } T(0,0,2) = (4,0,-2).$$

- (a) Find the standard matrix for the transformation T.
- (b) Find $\dim(\ker(T))$ and $\dim(\operatorname{Im}(T))$.
- (c) Find T(1,2,3) by using the standard matrix of T.

Solution: (a) $(4,0,-2) = T(0,0,2) = 2T(0,0,1) \Rightarrow T(0,0,1) = (2,0,-1)$. and so (2,-1,3) = T((1,0,0) + 3(0,0,1)) = T(1,0,0) + 3T(0,0,1) = T(1,0,0) + 3(2,0,-1) gives T(1,0,0) = (-4,-1,6).

Hence, the standard matrix for the transformation T is $\begin{bmatrix} -4 & 1 & 2 \\ -1 & 0 & 0 \\ 6 & 2 & -1 \end{bmatrix}$

(b) Since
$$\begin{vmatrix} -4 & 1 & 2 \\ -1 & 0 & 0 \\ 6 & 2 & -1 \end{vmatrix} = -5 \neq 0$$
, we have $\dim(\operatorname{Im}(T)) = \operatorname{rank}(T) = 3$.
Hence, $\dim(\ker(T)) = \dim(\mathbb{R}^3) - \operatorname{rank}(T) = 3 - 3 = 0$.
(c) $T(1,2,3) = \begin{bmatrix} -4 & 1 & 2 \\ -1 & 0 & 0 \\ 6 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ 7 \end{bmatrix}$.

Question 5: [Marks: 3+3+2]

Let
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ -3 & 0 & -2 \end{bmatrix}$$
. Then:

- (a) Show that the matrix A is diagonalizable.
- (b) Find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.
- (c) Compute the matrix A^{2024} .

Solution: (a)
$$0 = |A - \lambda I| = \begin{vmatrix} 2 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ -3 & 0 & -2 - \lambda \end{vmatrix} = -(\lambda + 1) (\lambda - 1)^2 \Rightarrow \lambda = -1, 1, 1 \text{ are the eigenvalues of } A.$$

The eigenspace corresponding to the eigenvalue $\lambda = -1$: $E_{-1} = <$ (-1/3, 0, 1)> and

the eigenspace corresponding to the eigenvalue $\lambda = 1$: $E_1 = \langle \{(-1, 0, 1), (0, 1, 0)\} \rangle$

So, the algebraic multiplicity of each eigenvalue of A equals to its geometric multiplicity.

Hence, the matrix A is diagonalizable.

(b) From Part (a), we get an invertible matrix
$$P = \begin{bmatrix} -1 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 with $P^{-1} = \begin{bmatrix} -\frac{3}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ \frac{3}{2} & 0 & \frac{3}{2} \end{bmatrix}$ so that

$$P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = D(say); \text{ which is a diagonal matrix.}$$

(c) From Part (b), we get
$$A^{2024} = (PDP^{-1})^{2024} = P\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{2024} P^{-1} = PIP^{-1} = I.$$

****!*