Question	1	2	3	4	5	Total
Grade						

Q1. (a) Without using truth tables, show that $(p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q)$ is logically equivalent to $p \wedge q$.
(b) Use induction to show the following for every $n \geq 1$:

$$
2+8+14+\cdots+(6 n-4)=n(3 n-1)
$$

(c) Prove by contradiction: "For $m \in \mathbb{Z}$, if $m^{2}-3 m+5$ is even, then m is even".

Q2. (a) Let R be the relation on \mathbb{Z} defined by $m R n$ if and only if 10 divides $m^{4}-n^{4}$. (i) Show that R is an equivalence relation.

$$
\begin{equation*}
\text { (iii) Is }[3]=[-1] \text { ? (Justify your answer.) } \tag{1pts}
\end{equation*}
$$

(b) Let P be the partial order on $A=\{a, b, c, d, e, f\}$ represented by the following Hasse diagram.

(i) List all ordered pairs of P.
(2pts)
(ii) Is P a total order? (Justify your answer.)
(c) Let $S=\{(1,1),(1,2),(2,3),(3,2),(3,4),(4,4),(5,5)\}$ be a relation on $B=\{1,2,3,4,5\}$.
(i) Represent S by a digraph.
(ii) Is S antisymmetric? (Justify your answer.)

Q3. (a) Let $G=(V, E)$ be an r-regular graph with $|V|=|E|$. Find the value of r. (1pts)
(b) Let H be a graph with degree-sequence $b-1, b, b+1, b+2$. Find the value of b if H has 9 edges.
(c) Let N be the simple graph represented by the following adjacency matrix.

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

(i) Draw N.
(1pts)
(ii) Is N connected? (Justify your answer.)
(1pts)
(iii) Determine whether N is bipartite. If so, give a bipartite representation. (2pts)
(d) Determine whether the following graphs I and J are isomorphic.

Q4. (a) For the graph L below, find a spanning tree with root r,

(i) using depth-first search;
(ii) using breadth-first search.
(b) (i) Using alphabetical order, form a binary search tree for the words Makkah, Madinah, Riyadh, Jeddah, Qassim, Al-Khobar, Dammam.
(ii) Is the tree in (i) full binary? (Justify your answer.)

Q5. (a) Let $f(x, y, z)=(\bar{x}+\bar{y})(x+z)$ be a Boolean function.
(i) Find the complete sum-of-products expansion (CSP) of f.
(ii) Find the complete product-of-sums expansion (CPS) of f.
(b) Let $g(x, y, z)=x y z+x y \bar{z}+x \bar{y} z+\bar{x} y \bar{z}+\bar{x} \bar{y} \bar{z}$ be a Boolean function.
(i) Build the K-map of g.
(ii) Simplify g (i.e., write in MSP form).

