

College of Science. Department of Physics & Astronomy

كلية العلوم قسم الفيزياء والفلك

Final Exam Academic Year 1442-1443 Hijri- 1st Semester

معلومات الامتحان Exam Information							
Course name	Classical Mechanics 2		اسم المقرر				
Course Code	Phys. 312		رمز المقرر				
Exam Date	2022-01-04	1443-06-01	تاريخ الامتحان				
Exam Time	08: 00 AM	وقت الامتحان					
Exam Duration	3 hours		مدة الامتحان				
Classroom No.			رقم قاعة الاختبار				
Instructor Name Dr. Rabia Qindeel, Dr. Abdelhay Salah		اسم استاذ المقرر					

معلومات الطالب Student Information					
Student's Name		اسم الطالب			
ID number		الرقم الجامعي			
Section No.	26751, 31855	رقم الشعبة			
Serial Number		الرقم التسلسلي			

General Instructions:

- Your Exam consists of 4 PAGES (except this paper)
- عدد صفحات الامتحان 4 صفحة. (بإستثناء هذه الورقة)
- Keep your mobile and smart watch out of the classroom.
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

هذا الجزء خاص بأستاذ المادة

This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	CLO 1.1	Part 1	10	
2	CLO 1.2	Part 2	10	
3	CLO 1.2	Part 3	10	
4	CLO 2.1	Part 4	10	
				40

EXAM COVER PAGE

Solve all parts. All the parts carry equal marks

Part 1: [10 Marks]

Question 1: Consider a simple pendulum that oscillates with a small angle. Derive the equation of motion

using: [4+4=8 Marks]

- a) Lagrangian mechanics
- b) Hamiltonian mechanics

Question 2: In two-body central force problem, reduced mass is; [1 Mark]

a.
$$\mu = \frac{m_1 - m_2}{m_1 + m_2}$$

b.
$$\mu = \frac{m_1 m_2}{m_1 - m_2}$$

c.
$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

d.
$$\mu = \frac{m_1 + m_2}{m_1 m_2}$$

Question 3: In an inertial reference frame, the homogeneity of space implies

that of a closed system is constant in time. [1 Mark]

- a. Total energy \mathbf{E}
- b. Linear momentum **P**
- c. Angular momentum L
- d. Linear displacement **r**

Part 2: [10Marks]

Question 1: Find the horizontal deflection caused by the Coriolis force acting on a *free-falling* particle in the earth's effective gravitational field from a height h(<< R) above its surface. [5 Marks]

Question 2: Derive the three-dimensional transformation matrix that rotates a *frame1* (x_1, x_2, x_3) to a *frame2* (x_1', x_2', x_3') around x_3 -axis by an angle θ . [5 Marks]

Part 3 [10 Marks]

Question 1: The Lagrangian is describing the motion of a particle of mass m as mentioned below:

$$L = \frac{1}{2}md^{2}(\dot{\theta}^{2} + \dot{\varphi}^{2}\cos^{2}\theta) + mgd\cos\theta$$

Where d is constant. [2+1+2 = 5 Marks]

- a) Find the momenta p_{θ} and p_{φ}
- b) Find the Hamiltonian of the system
- c) Write down the Hamilton's Equations of motion.

Question 2: A particle of mass m starts at rest on top of a smooth fixed hemisphere of radius a.

$$[2+2+1=5 Marks]$$

- a) Find the Lagrange equations for the particle.
- b) Find the force of constraint λ .
- c) Determine the angle θ_o at which the particle leaves the hemisphere.

Part 4: [10Marks]

Question 1: A particle moves in a logarithmic spiral orbit has radius, $r = ke^{\alpha\theta}$, (where k is constant).

The *Kinetic energy* of the particle is; $K.E = \frac{1}{2} \mu \dot{r}^2 + \frac{1}{2} \frac{l^2}{\mu r^2}$ where $l \equiv \mu r^2 \dot{\theta} = cost.$) and *Potential energy* of the particle is; $U(r) = -\int F(r) \cdot dr$: [2+4+2 = 8 Marks].

- a) Find the *Force law* F(r) for a central force field.
- b) Determine r(t) and $\theta(t)$ of the particle motion.
- c) What is the *total energy* of the particle?

Question 2: If the force on a body is always towards a fixed point, it is called a: [1 Mark]

- a. Newton's Force
- b. Gravitational Force
- c. Centrifugal Force
- d. Central Force

Question 3: A planet's speed is maximum: [1 Mark]

- a. when it is nearest the Sun
- b. when it is farthest from the Sun
- c. when it is beside the Sun
- d. when it is middle the Sun