

College of Science. Department of Chemistry

كلية العلوم قسم الكيمياء

Final Exam Academic Year 1443-1444 Hijri- First Semester

معلومات الامتحان Exam Information				
Course name	Physical Chemistry of Polymers		اسم المقرر	
Course Code	CHEM 330		رمز المقرر	
Exam Date	2022-11-17	1444-04-23		تاريخ الامتحان
Exam Time	08: 00 AM		وقت الامتحان	
Exam Duration	2 hours		ساعتان	مدة الامتحان
Classroom No.	1 B 43 Build. 5		رقم قاعة الاختبار	
Instructor Name	د. عمار تيغزه		اسم استاذ المقرر	

معلومات الطالب Student Information		
Student's Name		اسم الطالب
ID number		الرقم الجامعي
Section No.		رقم الشعبة
Serial Number		الرقم التسلسلي

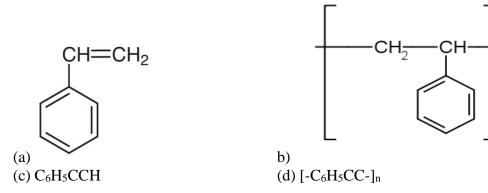
General Instructions:

عليمات عامه:

- Your Exam consists of PAGES (except this paper)
- عدد صفحات الامتحان ____ صفحة. (بإستثناء هذه الورقة)
- Keep your mobile and smart watch out of the classroom.
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	Definition and classification of polymers	1-4	4	
2	Polymers and copolymers Nomenclature, structure and microstructure of polymers	5-8	4	
3	Polymer crystallinity	9-12	4	
4	Polymerization reactions	13-22,26-29- 30,32	19	
5	Techniques of polymerization	31	1	
6	Techniques used to determine the average molecular weights	33-34	5	40
7	Thermal properties of polymers	23-25	3	40
8				


Multiple-Choice Questions (32 x 1 = 32 points)

Except for questions 17 and 34: 4 points for each

For each Multiple-Choice Question (MCQ), choose the correct answer and place the corresponding letter in the table of the first page:

1- Polymers are (a) micromolecules	(b) macromolecules
, ,	
(c) a and b	(d) mixtures of micromolecules
2- Calculate the average molecular weight monomer is 74 g/mol and the polymerization.	that of a poly(dimethylsiloxane) if the molar mass of its ation degree is 2367
(a) 31.986 g/ mol	(b) 500
(c) 165300 g/mol	(d) 175200 g/mol
3- Which of the following is Tetramers?	
(a) -[CH2-CH-Cl]3-	(b) -[Si(CH3)2O]3-
(c) -[Si(CH3)2O]4-	(d) -[O-CH2-CH2]2-
4- Which of the following is a correct sta	atement?
(a) Polymer chains are linked by prim	ary bonds
(b) Polymer is never used as a synony	ym for 'plastic' or rubber
(c) All plastic are polymers, but not a	ll polymers are plastics or rubber
	linking of the huge molecules called "monomers"
one type of monomer A and branches are	the copolymer in which the main chain is formed from a formed from another monomer B?
(a) Alternative copolymers	
(b) Graft copolymers.	
(c) Random copolymers.	
(d) Sequenced copolymers.	

6- The structure of polystyrene is:

- 7- Poly (oxyphosphohalide) is an example of
 - (a) organic polymer

(b) a and c

(c) inorganic polymer

(d) nothing from above

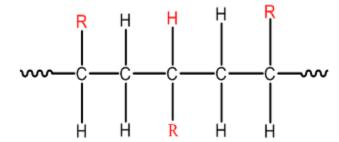
8-

The tacticity of this molecule is

- (a) Microstructure Cis
- (b) Syndiotactic
- (c) Isotactic
- (d) Atactic

9 - The maximum degree of crystallinity (~ 80 %) is found in polyethylene because polyethylene

- (a) has a bulky substituent
- (b) is a linear polymer
- (c) does not have substituents
- (d) b and c



- 10 -Amorphous polymers is/has
 - (a) Low-moderate chemical resistance
- (b) low elongation

(c) Less Soluble

(d) opaque

11-

This polymer is easy to crystallize because it is

- (a) an atactic polymer
- (c) a syndiotactic polymer

- (b) an isotactic
- (d) all of the above

12- Crystallinity can be measured by:

(a) Density measurements

- (b) X-ray diffraction e.g. powder (XRD)
- (c) Differential scanning calorimeter (DSC)
- (d) All the above

13- Peroxide is a good example of

- (a) physical initiator for free radical polymerization
- (b) chemical initiator for free radical polymerization
- (c) initiator for anionic polymerization
- (d) all options are wrong

.....

14- Among the following initiators which of them is used in the free radical polymerization?

(a) NaOH

- (b) HCl
- (c) Ph-CO-O-COPh
- (d)CH₃-CO-OCH₃

15- Among the following initiators, which of them can polymerize acrylic acid through cationic polymerization route.

(a) NaOH

(b) C(CH₃)₃I

(c) AlCl₄

(d) Ph-CO-O-CO-Ph

16- In coordination polymerization, initiators are complex formed from a catalyst + co-catalyst system such as

- a) CoCl₂/AlCl₃
- b) TiCl₄/AlCl₄
- c) NaCl/AlCl₃
- d) Et-Na/AlCl₄

17- Complete the following anionic polymerization where Monomer = H2C=CH-CN (Acrylonitrile) and Initiator= KNH2 (Potassium amide) (4 marks) 1-

2-

$$\vec{K}, \vec{N}H_2 + H = C = C + CN$$

3-

4-

$$H_2N$$
 $\left\{\begin{matrix} H & H \\ C - C \end{matrix}\right\}_{n} \left\{\begin{matrix} H & H \\ C - C \end{matrix}\right\}_{n} \left\{\begin{matrix} H & H \\ C N \end{matrix}$

(Macroanion)

18- Among the following monomers which of them is/are can be used in the polycondensation?

(a) HO-(CH2)2-OH

- (b) HOOC-(CH2)n-COOH
- (c) HO-(CH2)2-COOH
- (d) All of them

19- In the polycondensation of ethylene glycol (HO-(CH2)2-OH), what is the small molecule eliminated?

(a) HO-OH

(b) HOH

(c) HOCH₃

(d) None of them

is:	mers containing three functional groups, the polymer obtained
(a) Linear	(b) Crosslinked
(c) Branched	(d) (b) and (c)
21. The catalyst that can be used in t	he polycondensation reactions is/are:
(a) H_2SO_4	(b) NaOH
(c) CH ₃ COOH	(d) (a) and (b)
reaction. The polymer obtained is:	H ₃ , is an example of monomer used in polycondensation
(a) Linear	(b) Crystalline
(c) Branched	(d) None of the above
23- The melting temperature (Tm) is	•
9 1	ween the glassy state (solid) and the soft state of the polymer
· · ·	ween the solid state and the liquid state of the polymer
•	the gaseous state and the molten state of the polymer
• /	the liquid state and the degradation state of the polymer
24 The gloss transition temperature	(Ta) ic:
24- The glass transition temperature het	ween the glassy state (solid) and the soft state of the polymer
. /	ween the glassy state (solid) and the solit state of the polymer ween the solid state and the liquid state of the polymer
· · ·	the crystalline state and the molten state of the polymer
• • • • • • • • • • • • • • • • • • •	ween the soft state and the liquid state of the polymer
25. At temperature higher than Td (a	legradation temperature) the polymer become:
(a) gaseous	(b) Crystalline
(c) glassy	(d) None of the above
(1/8)	
26 With Cal City :	
(a) Benzene	cample(s) of monomer for ring opening polymerization? (b) ethylene epoxide
(c) caprolactone	(d) Only (b) and (c)
(e) cuprotactions	(d) only (b) and (c)
27- Examples of anionic catalysts fo	r ring opening polymerization are:
(a) NaOH	(b) sodium amide
(c) Sodium ethanolate	(d) All of them.
28- Ter-butyl iodide, C(CH ₃) ₃ I, is an	example of:
(a) Monomer for ring openin	<u> </u>
(b) Anionic catalyst for ring	0 1 •
(c) Cationic catalyst for ring	
(d) Carbanion catalyst for rin	·

29- Ziegler-Natta polym	erization is:			
(a) Free radical p (c) Anionic poly		(b) Coordination polymerization(d) Cationic polymerization.		
30- The reactivity ratio i during the copolymeriza		•	(of monomers A and B) obtained if $R_A = R_B$?	
(a) Alternating co	• <u>•</u> <u>•</u>	(b) Random copolyn		
(c) Mixture of two homopolymers		(d) Block copolymer.		
31- Which statement abo	•	is true?		
(a) Polymerization don't need initiator		(b) Polymerization need polar solvent		
(c) monomer must be liquid		(d) None of the above.		
32- Polymerization by p	recipitation requires the	presence of a solvent that	nt dissolves:	
(a) Only monomer		(b) Only initiator		
(c) Only monomer and initiator		(d) Only resulting polymer.		
33- Determine the avera	ge molecular weight (M	w in kg mol⁻¹) of a samp	ole constituted of:	
Ni	$3x10^{3}$	$5x10^3$	$9x10^{3}$	
Mi / g mol ⁻¹	$4x10^4$	$6x10^4$	$8x10^4$	
(a) 73.1	(a) 73.1 (b) 67.0			
(c) 57.6	(c) 57.6 (d) 70.5			
34- Complete the blank Size exclusion chromato	•		hnique Viscosity	
The molecular masses of				
		then \overline{Mn} is determined, if		
		then \overline{Mw} is determined, if		
		nen Mv is determined, a		
		nen Mz is determined.		