جامعة الملك سعود

كلية العلوم

قسم الرياضيات

343 ريض (نظرية الزمر) الفصل الدراسي الأول 1446 الاختبار النهائي

السؤال الأول (2+2+ 2)

- $a,b \in G$ لكل $(ab)^{-1} = a^{-1}b^{-1}$ اذا وفقط اذا $ab^{-1} = a^{-1}b^{-1}$ لكل الكل الكل أثبت أنه لأي زمرة
 - ب) لتكن G زمرة، $S = \{aba^{-1}b^{-1}: a, b \in G\}$. يعرف المبدل للمجموعة Gكالتالي: C = span(S)
- ت) ليكن النظام $(x*y=\frac{x+y}{1+xy})$ معرف كالتالي : $G=\{x\in\mathbb{R}:x^2<1\}$ حيث $G=\{x\in\mathbb{R}:x^2<1\}$ أثبت أن هذا النظام تجميعي وإبدالي ثم أثبت أنه زمرة ابدالية.

السؤال الثاني (2+2)

- أ) عرف الزمرة الزوجية من الدرجة $\mathbf{D_n}$ (Dihedral group of degree n) $n \geq 3$ ثم أثبت أن $\mathbf{D_n}$ زمرة غير إبداليه.
 - HK extstyle G فإن HK extstyle G فاثبت انه اذا كانت G فإن G فاثبت انه اذا كانت G فيات G فيات G

السؤال الثالث (1+1+1+1+ 1+5)

- $.arphi(H) \leq G_2$ فإن $H \leq G_1$ فإن كانت أنه اذا كانت $\varphi\colon G_1 o G_2$ فإن $\varphi\colon G_1 o G_2$
- ب) اثبت ان أي تشاكل زمر G o G o G' بحيث ان G اولي اما ان يكون تشاكلا تافها او داله احاديه.
 - ت) أثبت أن $\mathbb{Z}_2 \times \mathbb{Z}_8$ لا يمكن أن يكون صورة تشاكلية للزمرة $\mathbb{Z}_2 \times \mathbb{Z}_8$.
 - ث) عرف زمرة سيلو من النوع p.
 - ج) أعط مثال لزمرة G تحوي على زمرة سيلو جزئية من النوع Sylow 5-Subgroup).5.
 - ح) أوجد جميع زمر سيلو الجزئية من S_3

السؤال الرابع (1+2)

- . $K ext{ of } G$ و نواته $K ext{ of } G$ و نواته $K ext{ of } G$
- ب) اذا كانت G زمره غير ابداليه بحيث ان |G|=pq حيث أن p,q عددين اولبين، فاثبت ان مركز الزمرة هو المركز التافه .

السؤال الخامس (1+2)

- .Aut(G) ، G عرف زمرة التماثلات الذاتية للزمرة عرف (أ
 - $Aut(S_3) = S_3$ ب أثبت أن

سادس (1+3+2)

- أ) متى نقول عن زمره G انها بسيطة.
- ب) اذكر نص كلا من النظريات الاتيه:
 - 1) مبرهنة كوشى.
 - 2) مبرهنة لاجرانج

3) مبرهنة سيلو الأولى.

ت) برهن بالتفصيل انه لا توجد زمره بسيطة رتبتها 56.

السؤال السابع (10 درجات)

اثبت صحة او خطا كل من ما يلى:

- $H \supseteq G$ فان G فان G فان G فان G ابحیث ان G بحیث ان G اذا کانت G فان G فان G
 - . |(4,8,10)| = 60 فان $(4,8,10) \in Z_{12} \times Z_{60} \times Z_{24}$ اذا كانت (2,8,10)
 - $aH \leq G$ فان $a \in G$ وکان $H \leq G$ فان G فان G
- رتبتها $H \leq G$ زمرة بحيث أن G = n ، فإنه لأي عدد m يقسم m يوجد زمرة جزئية G (4

|H| = m

 S_n مجموعة التبديلات الفردية في , $B_n \leq S_n$ (5