KING SAUD UNIVERSITY, DEPARTMENT OF MATHEMATICS MATH 204. TIME: 3H, FULL MARKS: 40, FINAL EXAM

Question 1. $[4,4,5]$ a) Solve the initial value problem

$$
\left\{\begin{array}{c}
\left(x+y e^{y / x}\right) d x-x e^{y / x} d y=0 \\
y(1)=0
\end{array}\right.
$$

b) Solve the differential equation $y\left(e^{-2 x}+y^{2}\right) d x-e^{-2 x} d y=0$.
c) A thermometer is taken from an inside room to the outside, where the air temperature is $5^{0} F$. After 1 minute the temperature reads $55^{\circ} \mathrm{F}$, and after 5 minutes it reads $30^{0} F$. What is the initial temperature of the inside room.

Question 2. $[4,5]$ a) If $y_{1}=x^{-1}$ is a solution of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0, x>0$, use reduction of order to solve the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=\ln x, \quad x>0
$$

b) Find the largest interval for which the following initial value problem admits a unique solution

$$
\left\{\begin{array}{c}
\frac{y^{\prime \prime}}{x^{2}-1}+(\tan x) y=e^{x} \\
y(0)=1, y^{\prime}(0)=0
\end{array}\right.
$$

Question 3. $[3,5]$ a) Determine the form of the particular solution of the following differential equation

$$
y^{\prime \prime \prime}-3 y^{\prime}+2 y=x^{2} e^{x}+3 e^{-x}+\sin 2 x .
$$

b) Use power series method to find the first four nonzero terms of the solution of the initial value problem

$$
\left\{\begin{array}{c}
y^{\prime \prime}+3 x y^{\prime}-y=0 \\
y(0)=2, \quad y^{\prime}(0)=0
\end{array}\right.
$$

Question 4. $[5,5]$ a) Consider the 2π-periodic even function defined by

$$
f(x)=1-\frac{2 x}{\pi}, \text { for } x \in[0, \pi]
$$

Sketch the graph of f on $(-3 \pi, 3 \pi)$, obtain the Fourier series for the function f, and deduce the value of the numerical series $\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}$, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
b) Consider the function

$$
f(x)=\left\{\begin{array}{lr}
1+x, & -1 \leq x \leq 0 \\
1-x, & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Sketch the graph of f, find the Fourier integral representation of f, and deduce the value of $\int_{0}^{\infty} \frac{\sin ^{2} \lambda}{\lambda^{2}} d \lambda$.

