King Saud University College of Sciences Department of Mathematics Semester 462 / Final Exam / MATH-244 (Linear Algebra)

Max. Marks: 40			Time: 3 hours
Name:	ID:	Section:	Signature:
Note: Attempt all the five question	is. Calculators are	not allowed.	
Question 1 [Marks 10]: Which of t	he given choices are	correct?	
(i) If square of a matrix A is zer a) 0			d) $A + I$
(ii) If A is a square matrix of ore	der 3 with $det(A) = 2$,	then $det(det(\frac{1}{det(\Delta)}A^3)$	(A^{-1}) is equal to:
(iii) If the general solution of AX general solution of $AX = B$	b) $1/2$ = 0 is $(-2r, 4r, r), r$	c) 1/3	d) 1/16
a) $(1-2r, 4r, r-2)$	b) (-2r, 0, -2r)	c) (-2r, 4r, r)	d) $(-2r-1, 4r, r-2)$
(iv) A subset S of \mathbb{R}^3 is a basis o	f the vector space \mathbb{R}^3	if \boldsymbol{S} is equal to:	
a) {(1,0,0),(0,2,1),(0,6	(0,0)} b) {(1,1,0),(2,1,0),	$(3,2,0)$ } c) $\{(1,1,0),(0,0,0)\}$	$(3,2,1)$ d) $\{(1,1,0),(0,0,1),(2,2,1)\}$
(v) If $B = \{u_1 = (2,1), u_2 = (4 \text{ transition matrix } P_{C \to B} \text{ from } \}$	(3) and $C = \{v_1 = (C \text{ to } B \text{ is equal to:} \}$	$(0,1), v_2 = (6,0)$ are or	rdered bases of \mathbb{R}^2 , then the
		c) $\begin{bmatrix} -2/_3 & 3 \\ 1/_3 & -1 \end{bmatrix}$	d) $\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$
(vi) If B is a square matrix of ord	er 3 with $det(B) =$	2, then $nullity(B)$ is ed	qual to:
a) 2	b) 1	c) 3	d) 0
(vii) If \langle , \rangle is an inner product on $\langle u + 2v, 5u - v \rangle$ is equal to	\mathbb{R}^n and $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ such	h that $ u ^2 = 5$, $ v ^2 = 1$	= 1, $\langle u, v \rangle = -2$, then
a) $\sqrt{5}$	b) 5	c) 9	d) 41
(viii) If $S = \{A, I_2\} \subseteq M_{2 \times 2}(\mathbb{R})$, w	here A is a non-symn	netric matrix, then S mu	st be:
a) linearly dependen	nt b) a spanning set	for $M_{2\times 2}(\mathbb{R})$ c) linear	ly independent d) orthogonal
(ix) Let T be the transformat $u \in \mathbb{R}^2$, where $ u $ is the Eu	ion from the Euclic clidean norm of u. Th	dean space \mathbb{R}^2 to \mathbb{R} ginen, for $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^2$ and	even by $T(u) = u $ for all $k \in \mathbb{R}$, T satisfies:
a) $T(\boldsymbol{u}+\boldsymbol{v})=T(\boldsymbol{u})$	+T(v) b) $T(u+v)$	$0 \le T(\boldsymbol{u}) + \boldsymbol{T}(\boldsymbol{v})$ c) T	$(0) > 0 d) T(k\mathbf{u}) = kT(\mathbf{u})$
(x) Zero is an eigenvalue of the r	matrix $\begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix}$ with	h geometric multiplicity	equal to:

Question 2 [Marks 2 + 2 + 3]:

- (a) Find the square matrix A of order 3 such that $A^{-1}(A-I) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ and evaluate det(A).

 (b) Let $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & -2 \\ -2 & -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 1 & 1 \\ -1 & 1 & -2 \\ 1 & -1 & -2 \end{bmatrix}$. Find a matrix X that satisfies XA = B.

 (c) Solve the following system of linear equations:

$$x + y + z = 1$$

 $2x + 2z = 3$
 $3x + 5y + 4z = 2$.

Question 3 [Marks
$$3 + 3 + 2$$
]:
Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 2 & 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$. Then:

- (a) Find a basis and the dimension for each of the vector spaces row(A), col(A), and N(A).
- (b) Decide with justification whether the following statements are true or false:

(i)
$$row(A) = row(B)$$

(ii)
$$col(A) = col(B)$$

(iii)
$$N(A) = N(B)$$
.

(c) Find all square matrices Z of order 3 such that AZ = 0.

Question 4 [Marks 3 + (1 + 3)]:

- (a) Construct an orthonormal basis C of the Euclidean space \mathbb{R}^3 by applying the Gram-Schmidt algorithm on the given basis $B = \{v_1 = (1,1,0), v_2 = (1,0,1), v_3 = (0,1,1)\}$, and then find the coordinate vector of $v = (1,2,0) \in \mathbb{R}^3$ relative to the orthonormal basis C.
- (b) Let \mathcal{P}_2 denote the vector space of real polynomials with degree ≤ 2 . Consider the linear transformation $T: \mathbb{R}^3 \to \mathscr{S}_2$ defined by: $T(1,0,0) = x^2 + 1$, $T(0,1,0) = 3x^2 + 2$, $T(0,0,1) = -x^2$. Then:
 - (i) Compute T(a, b, c), for all $(a, b, c) \in \mathbb{R}^3$.
 - (ii) Find a basis for each of the vector spaces Im(T) and ker(T).

Question 5 [Marks
$$3 + 2 + 3$$
]: Let $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 1 & -1 \\ 2 & 2 & -2 \end{bmatrix}$. Then:

- (a) Find the eigenvalues of A.
- (b) Find algebraic and geometric multiplicaties of all the eigenvalues of A.
- (c) Is the matrix A diagonalizable? If yes, find a matrix P that diagonalizes A.