Signature:

King Saud University College of Sciences

Department of Mathematics

ID:

Note: Attempt all the five questions. Scientific calculators are not allowed.

Question 1 [Marks 1×10]: Choose the correct answer:

Name:

Semester 461 / Final Exam / MATH-244 (Linear Algebra) Max. Marks: 40 Time: 3 hours

Section:

(a) 1	(b) 2	(c) 3	(d) 4
(ii) If A is a nonzero 4×7	matrix, then the possible valu	es for <i>nullity</i> (A) are:	
(a) 2,3,4,5,6	(b) 3,4,5,6,7	(c) 3,4,5,6	(d) 1,2,3,4
(iii) If u and v are nonzero v (a) u	vectors in an inner product space (b) $u + v$	ace with $d(u, v) = d(u, -v)$ (c) $u - v$	v), then u is orthogonal to: (d) v .
(iv) If $\{u, v\}$ is linearly indep	pendent and $\{u, v, w\}$ is linear	ly dependent, then:	
(a) { <i>u</i> , <i>w</i> } is linearly independent.	(b) $\{v, w\}$ is linearly independent.	(c) $w \in span\{u, v\}$	$ (d) \ u \in span\{v\} $
(v) If $\begin{bmatrix} 1 & 2 \\ 3 & -3 \end{bmatrix}$ is the transition	on matrix from the basis $\{u, (1)\}$	$(1,1)$ to the basis $\{(5,4), v\}$	for \mathbb{R}^2 , then u is equal to:
(a) (1,3)	(b) (4, -1).	(c) (14,11)	(d) (3,0).
(vi) If $S = \{v_1 = (1,1), v_2 = (1,1), v_3 = (1,1), v_4 = (1,1), v_5 = (1,1), v_6 = (1,1), v_7 = (1,1), v_8 = (1,1), v_8$	1,0)} is a basis for \mathbb{R}^2 and the	transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is	such that $T(v_1) = (1, -2)$
and $T(v_2) = (-4,1)$, the	n $T(5,-3)$ equals:		
(a) (-35, 14)	(b) (2, -10)	(c)(2,5)	(d) (2, 10).
(vii) The set $\{(-3, 4, 0), (4, x)\}$	(x, 0), (0, 0, x) of vectors in the	ne Euclidean space \mathbb{R}^3 is ort	hogonal iff:
(a) $x = 1$	(b) $x = 3$	(c) $x = -3$	(d) $x = 5$
(viii) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear	r transformation with $T(1,0) =$	(1,2) and $T(1,1) = (5,-3)$, t	hen its standard matrix is:
(a) $\begin{bmatrix} 1 & 4 \\ 2 & -5 \end{bmatrix}$	(b) $\begin{bmatrix} 1 & 5 \\ 2 & -3 \end{bmatrix}$	(c) $\begin{bmatrix} 1 & 2 \\ 5 & -3 \end{bmatrix}$	(d) $\begin{bmatrix} 1 & 6 \\ 2 & -1 \end{bmatrix}$
(ix) The eigenvalues of a squ	uare matrix A are the same as	the eigenvalues of:	
(a) A^2 .	(b) A^T .	(c) RREF(A).	(d) <i>adj</i> (<i>A</i>)
(x) If A is diagonalizable matri	x, then det(A) equals:		
(a) The sum of the eigen values of A	(b) The product of the eigen values of A	(c) Zero	(d) Number of columns in A.

Question 2 [Marks 2 + 2 + 2]:

- (a) Let a matrix A satisfy $A^2 + A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$. Then show that A is invertible.
- (b) Consider \mathbf{B} , $\mathbf{C} \in \mathbf{M}_3(\mathbb{R})$ with $|\mathbf{B}| = 2|\mathbf{C}| = 1$. Then evaluate $|3 \mathbf{C} \mathbf{B} adj(B^{-3})|$.
- (c) Find the values of a, b such that the following system of linear equations

$$x-2y+3z=4$$
$$3x-4y+5z=b$$
$$2x-3y+az=5$$

has: (i) no solution

(ii) unique solution.

Question 3 [Marks 3 + 3 + 2]:

- (a) Find a subset **B** of $G = \{(1,1,-4,-3), (2,0,2,-2), (1,2,-9,-5)\}$ that forms a basis for span(G). Then express each vector in $\mathbf{G} - \mathbf{B}$ as a linear combination of vectors in \mathbf{B} .
- (b) Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 0 2 & 1 & 3 \\ -1 & 1 & 5 1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4 \end{bmatrix}$. Then find a basis for the column space $col(\mathbf{A})$ and dimension of the null space N(A).
- (c) Let **B** and **B'** be two ordered bases for \mathbb{R}^2 with a transition matrix $P_{B\to B'} = \begin{bmatrix} 5 & 3 \\ -1 & -1 \end{bmatrix}$ from **B** to **B'**. If $[v]_{\mathbf{B}'} = \begin{bmatrix} 11 \\ -3 \end{bmatrix}$ is the coordinate vector of a vector $\mathbf{v} \in \mathbb{R}^2$ relative to the basis \mathbf{B}' . Then find $[\mathbf{v}]_{\mathbf{B}}$.

Question 4 [Marks 2 + 3 + 5]:

- (a) Let $\{v_1 = (1,0,0,0), v_2 = (0,1,0,0), v_3 = (0,0,1,0), v_4\}$ be the orthonormal basis obtained by applying the Gram-Schmidt algorithm on the basis $\{u_1 = (3,0,0,0), u_2 = (3,3,0,0), u_3 = (3,3,3,0), u_4 = (3,3,3,3)\}$ of Euclidean inner product space \mathbb{R}^4 . Then find the vector v_4 .
- (b) Let v_0 be any fixed vector in an inner product space V of dimension n and $T:V\to\mathbb{R}$ be the linear
- transformation defined by $T(v) = \langle v, v_0 \rangle$ for all $v \in V$. If $v_0 \in Ker(T)$, then show that nullity(T) = n. Let $\mathbf{B} = \{u_1 = (1,0,0), u_2 = (0,1,0), u_3 = (0,0,1)\}$ and $\mathbf{C} = \{v_1 = (1,1,1), v_2 = (1,1,0), v_3 = (1,0,0)\}$ be two ordered bases for \mathbb{R}^3 . Let the linear transformation $\mathbf{T} : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by: $T(x_1, x_2, x_3) = (x_1 - x_2, x_2 - x_1, x_1 - x_3)$. Find the matrix $[T]_B$ of the transformation T relative to the basis B and then use it to find the matrix $[T]_C$.

Question 5 [Marks 2 + 1 + 3]: Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 2 & 1 \\ 0 & 0 & -1 \end{bmatrix}$. Then:

- (a) Find the eigenvalues of A.
- (b) Is the matrix A diagonalizable? Justify your answer.
- (c) Find a diagonal matrix **D** and an invertible matrix **P** such that $P^{-1}AP = D$.