Exercises

March 9, 2025

1 **Real Numbers**

.

1. Determine $\sup A$, $\inf A$, $\max A$, $\min A$ where they exist;

(a)
$$A = \left\{ 1 - \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$$

- (a) $A = \left\{ 1 \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$ (b) $A = \left\{ \frac{1}{n} \frac{1}{m} : n, m \in \mathbb{N} \right\}$ (c) $A = \left\{ x \in \mathbb{R} : x^2 4 < 0 \right\}$
- 2. If b is an upper bound of A, prove that $b = \sup A$ if and only if for every $\varepsilon > 0$ there is an element $a \in A$ such that $a > b - \varepsilon$
- 3. If the sets A and B are bounded above and $A \subseteq B$, prove that

 $\sup A \le \sup B$

4. Let A and B be bounded subsets of \mathbb{R} , and define

 $A + B = \{a + b : a \in A, b \in B\}$

Prove that $\sup(A + B) = \sup A + \sup B$

Sequences $\mathbf{2}$

$\mathbf{2.1}$ convergent sequences

1. Use the definition to show that

(a)
$$\lim \frac{2n-1}{3n+2} = \frac{2}{3}$$

(b) $\lim \frac{n^3+1}{2n^3+n} = \frac{1}{2}$

- 2. Prove that $\lim x_n = 0$ if and only if $\lim |x_n| = 0$
- 3. If the two sequences (x_n) and (y_n) converge to c, and we define the shuffled sequence (z_n) by

 $(z_1,z_2,z_3,z_4,\dots)=(x_1,y_1,x_2,y_2,\dots)$

show that the sequence (z_n) also converges to c

- 4. Give an example of two sequences (x_n) and (y_n) such that $(x_n + y_n)$ is convergent and (x_n) is divergent.
- 5. If the sequences (x_n) and $(x_n + y_n)$ are both convergent, prove that (y_n) is also convergent and determine its limit. Can you state a corresponding result for the sequence $(x_n \cdot y_n)$?
- 6. Give an example of a divergent sequence (x_n) such that $(|x_n|)$ is convergent.

When does the convergence of $(|x_n|)$ imply the convergence of (x_n) , and what is the relation between $\lim |x_n|$ and $\lim x_n$ when both exist?

7. If $\lim \frac{x_n - 1}{x_n + 1} = 0$, prove that $\lim x_n = 1$

2.2 Monotonic sequences

- 8. Prove that $x_n = \frac{n^n}{n!}$ is monotonic
- 9. Prove that each of the following sequences is monotonic and bounded, then find its limit

(a)
$$x_1 = 1$$
, $x_{n+1} = \sqrt{3 + x_n}$, for all $n \in \mathbb{N}$

(b)
$$x_1 = 1, \ x_{n+1} = \frac{4x_n + 2}{x_n + 3}$$
, for all $n \in \mathbb{N}$

10. Given $x_n=\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{2n}$, prove that (x_n) is decreasing and bounded then conclude it is convergent.

2.3 Cauchy criterion

11. Show by definition that (x_n) is a Cauchy sequence where

$$x_n = \frac{5n}{n+3}$$

12. If (x_n) satisfies

$$|x_{n+1} - x_n| < \frac{1}{2^n}$$

prove that (x_n) is a Cauchy Sequence.

13. If

$$x_n = \sum_{k=1}^n \frac{1}{k^2}$$

prove that (x_n) is a Cauchy sequence.

2.4 Subsequences

14. Prove that the sequence $\left(x_{n}\right)$ has a convergent subsequence

$$x_n = \frac{(n^2 + 20n + 30)\sin(n^3)}{n^2 + n + 1}$$

15. Give an example of

- (a) a sequence with no convergent subsequence
- (b) an unbounded sequence which has a convergent subsequence
- 16. If every subsequence of (x_n) has a subsequence which converges to 0, prove that $\lim x_n=0$

3 Series

- 1. Prove that changing a finite number of terms of a series does not affect its convergence.
- 2. If $x_n \ge 0$ for all $n \in N$, prove that the series $\sum x_n$ converges if, and only if, the sequence $S_n = \sum_{k=1}^n x_k$ is bounded above
- 3. Prove that if a > 0, then

$$\sum_{n=0}^\infty \frac{1}{(n+a)(n+1+a)} = \frac{1}{a}$$

4. Test the following series for convergence

$$\sum_{n=1}^\infty \frac{1}{(n+1)(n+1)}$$

(a)

$$\sum_{n=1}^{\infty} (-1)^n \frac{\log n}{n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2}{n!}$$
 (d)

$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

- 5. Prove that the convergence of $\sum a_n^2$ and $\sum b_n^2$ implies the convergence of $\sum a_n b_n$
- 6. Prove that the convergence of $\sum a_n^2$ implies the convergence of $\sum \frac{a_n}{n}$
- 7. Let the sequence (x_n) be positive and decreasing. If $\sum x_n$ converges, prove that $\lim nx_n=0$

4 Limits of Functions

- 1. Prove by definition that
 - (a) $\lim_{x\to 2} x^3 = 8$
 - (b) $\lim_{x \to 4} \sqrt{x} = 2$
- 2. Prove that the following limits does not exist

(a)
$$\lim_{x \to 0^+} \frac{1}{\sqrt{x}}$$

(b)
$$\lim_{x \to 0} \cos \frac{1}{2x}$$

- 3. Let $f: D \to \mathbb{R}$ and $c \in \hat{D}$. If $\lim_{x \to c} f(x)^2 = 0$, prove that $\lim_{x \to c} f(x) = 0$. Give an example of a function f for which $\lim_{x \to c} f(x)^2$ exists but $\lim_{x \to c} f(x)$ does not exist.
- 4. Give an example of two functions such that
 - (a) $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ do not exist, but $\lim_{x\to c} (f(x) + g(x))$ exists.
 - (b) $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ do not exist, but $\lim_{x\to c} f(x)g(x)$ exists.
- 5. If $\lim_{x\to c} f(x)$ exists and $\lim_{x\to c} (f(x) + g(x))$ does not exist, what we can say about $\lim_{x\to c} g(x)$
- 6. Determine the values of the following limits where they exist:

(a)
$$\lim_{x \to 0} \frac{x^2}{|x|}$$

(b) $\lim_{x \to 0} \frac{x^2(3 + \sin x)}{(x + \sin x)^2}$

- 7. If $\lim_{x\to c} f(x) = 0$ and g is a bounded function in some neighborhood of c, prove that $\lim_{x\to c} f(x)g(x) = 0$.
- 8. If $f(x) \geq 0$ for all $x \in D_f,$ and $\underset{x \to c}{\lim} f(x) = L$, prove that $\underset{x \to c}{\lim} \sqrt{f(x)} = \sqrt{L}.$
- 9. If $\lim_{x\to c} f(x) = L$, prove that $\lim_{x\to c} |f(x)| = |L|.$ When is the converse also true?
- 10. Prove by definition that $\lim_{x\to 3} \frac{1}{(x-3)^2} = \infty$
- 11. Determine the values of the following limits where they exist:
 - (a) $\lim_{x \to \infty} \frac{2x^3 + 2x + 1}{3x^3 + x^2}$ (b) $\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}}$
- 12. Let $f:(0,\infty)\to\mathbb{R}$. Prove that $\lim_{x\to 0^+}f\left(\frac{1}{x}\right)=L$ if and only if $\lim_{x\to\infty}f(x)=L.$

5 Continuity

1. Let $f:(-1,1)\to \mathbb{R}$ satisfy

$$|f(x)| \le |x| \quad \forall x \in (-1,1)$$

Show that f is continuous at x = 0.

- 2. If the function $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(x) = 0 for all $x \in \mathbb{Q}$, prove that f(x) = 0 for all $x \in \mathbb{R}$.
- 3. Give an example of two functions, one of which is not continuous at c, whose product is continuous at c.
- 4. Give an example of two functions, one of which is not continuous at c, whose composition is continuous at c.
- 5. Let $f, g : [a, b] \to \mathbb{R}$ be continuous and f(a) < g(a), f(b) > g(b). Show that there is $c \in (a, b)$ such that f(c) = g(c).

- 6. Prove that the equation $\cos x = x$ has a solution in $(0, \pi/2)$.
- 7. Determine a real interval of length 1 where the equation $x^4 2x^3 5 = 0$ has a solution.
- 8. prove that if $f:[a,b]\to\mathbb{R}$ is continuous and has a maximum at $c\in(a,b)$ then f is not injective.
- 9. Determine which functions are uniformly continuous:

(a)
$$f(x) = \sqrt[3]{x}, \quad x \in \mathbb{R}$$

(b) $f(x) = \frac{x^2}{x+1}, \quad x \in (0, \infty)$
(c) $f(x) = x \sin x, \quad x \in \mathbb{R}$

6 Differentiation

6.1 The Derivative

- 1. Use the definition to find the derivative of $f(x) = \frac{1}{x}, x \neq 0$
- 2. Find the set of points where the function f is not differentiable

(a)
$$f(x) = |x^2 - 1|$$

(b) $f(x) = x|x|$

3. If g(0) = g'(0) = 0, find f'(0) where

$$f(x) = \begin{cases} g(x)\sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

4. Let

$$f(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q}^d \end{cases}$$

Prove that f is differentiable at x = 0, and evaluate f'(0).

- 5. If the function f satisfies $|f(x)| \leq |x|^r$, where r > 1, prove that f is differentiable at x = 0.
- 6. Let $f : \mathbb{R} \to \mathbb{R}$. The function f is even if f(-x) = f(x) for all $x \in \mathbb{R}$, and odd if f(-x) = -f(x) for all $x \in \mathbb{R}$. If f is differentiable, prove that f' is odd when f is even, and even when f is odd.

6.2 Mean Value Theorem

7. Use the definition to show that $f(x) = \sqrt{x^2 + 1}$ is differentiable on \mathbb{R} , then prove that there is $c \in (0, 1)$ such that

$$\sqrt{2} - 1 = \frac{c}{\sqrt{c^2 + 1}}$$

8. If $f : \mathbb{R} \to \mathbb{R}$, and there is a real constant K > 0 such that

$$|f(x)-f(y)|\leq K|x-y|^2\quad \forall x,y\in\mathbb{R}$$

show that f is constant.

- 9. Prove that $|\cos x \cos y| \le |x y|$ for all $x, y \in \mathbb{R}$.
- 10. Prove that

$$\sqrt{1+x} < 1 + \frac{x}{2} \quad \forall \ x > 0$$

6.3 L'Hopital's Rule

- 11. Evaluate the following limits
 - (a) $\lim_{x \to 0} \frac{\cos x 1}{x^2}$ (b) $\lim_{x \to 0^+} \left(1 + \frac{2}{x}\right)^x$
- 12. Let $g \in C^2(\mathbb{R})$ such that g(0) = g'(0) = 0 and g''(0) = 6. If $f : \mathbb{R} \to \mathbb{R}$ is continuous and defined by

$$f(x) = \frac{g(x)}{x}, \qquad x \neq 0$$

Find f(0), and discuss the differentiability of f at x = 0.

13. If $f(x) = x^2 \sin(\frac{1}{x})$, $g(x) = \sin x$, show that $\lim_{x \to 0} \frac{f(x)}{g(x)}$ exists, while $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ does not exist.

6.4 Taylor's Theorem

14. Prove that for x > 0,

$$1 + \frac{x}{2} - \frac{x^2}{8} \le \sqrt{x+1} \le 1 + \frac{x}{2}$$

15. Decide whether f(0) is and extremum value of $f(x) = \sin x - x + \frac{x^3}{6}$.