Exercises Math 254

СН	Sections	Problem Set
1	1.2, 1.3	 7. Find the absolute and relative errors in approximating π by 3.1416. What are the corresponding errors in the approximation 100π ≈ 314.16? 8. Calculate the error, relative error, and number of significant digits in the following approximations, with p ≈ x: (a) x = 25.234, p = 25.255. (b) x = e, p = 19/7. (c) x = √2, p = 1.414.
3	2.1, 2.2, 2.3, 2.4, 2.5. 3.1, 3.2,	<u>Book:</u> Page 76: 1 (a,c), 2(b), 3→ 15. Book: Page 178: 2→16
	3.3, 3.4, 3.5, 3.6, 3.7.	36. Consider the following system of equations: $4x_1 + 2x_2 + x_3 = 1$ $x_1 + 7x_2 + x_3 = 4$ $x_1 + x_2 + 20x_3 = 7.$ (a) Show that the Jacobi method converges using $ T_J _{\infty} < 1$. (b) Compute the second approximation $\mathbf{x}^{(2)}$, starting with $\mathbf{x}^{(0)} = [0, 0, 0]^T$. (c) Compute an error estimate $ \mathbf{x} - \mathbf{x}^{(2)} _{\infty}$ for your approximation. 38. Consider the following system of equations: $4x_1 + 2x_2 + x_3 = 11$ $-x_1 + 2x_2 = 3$ $2x_1 + x_2 + 4x_3 = 16$. (a) Show that the Gauss-Seidel method converges using $ T_G _{\infty} < 1$. (b) Compute the second approximation $\mathbf{x}^{(2)}$, starting with $\mathbf{x}^{(0)} = [1, 1, 1]^T$.

		44. Consider the following system:
		4x ₁ - 2x ₂ - x ₃ = 1 -x ₁ + 4x ₂ - x ₄ = 2 -x ₁ + 4x ₃ - x ₄ = 0 - x ₂ - x ₃ + 4x ₄ = 1. Using $\mathbf{x}^{(0)} = 0$, how many iterations are required to approximate the solution to within five decimal places using: (a) Jacobi method, (b) Gauss-Seidel method
4	4.1, 4.2,	
	4.3.	<u>Book:</u> Page 236: 1→19.
5	5.1, 5.2,	<u>Book:</u> Page 293: 1→21
	5.3, 5.4, 5.5.	W. Use the most accurate formula to determine approximations that will complete the following table:
		x
		2.1 -1.709847
		2.2 -1.373823
		2.3 -1.11921
		2.4 -0.916014
		-35 . Evaluate $\int_0^1 e^{x^2} dx$ by Simpson's rule choosing h small enough to guarantee five decimal accuracy. How large can h be?
6	6.1, 6.2,	<i>Book:</i> Page 316: 3→5