1-3 Classification of Differential Equations

In each of Problems 1 through 4, determine the order of the given differential equation; also state whether the equation is linear or nonlinear.

1.
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = \sin(t)$$

2.
$$(1+y^2)\frac{d^2y}{dt^2} + t\frac{dy}{dt} + y = e^t$$

3.
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = 1$$

4.
$$\frac{d^2y}{dt^2} + \sin(t+y) = \sin(t)$$

In each of Problems 5 through 10, verify that each given function is a solution of the differential equation.

5.
$$y'' - y = 0$$
; $y_1(t) = e^t$, $y_2(t) = \cosh(t)$

6.
$$y'' + 2y' - 3y = 0$$
; $y_1(t) = e^{-3t}$, $y_2(t) = e^t$

7.
$$tu' - u = t^2$$
: $u = 3t + t^2$

8.
$$y''' + 4y'' + 3y = t$$
; $y_1(t) = t/3$, $y_2(t) = e^{-t} + t/3$

9.
$$t^2y'' + 5ty' + 4y = 0$$
, $t > 0$; $y_1(t) = t^{-2}$, $y_2(t) = t^{-2}\ln(t)$

2.1 Linear Differential Equations; Method of Integrating Factors

In each of the following questions

- a. Draw a direction field for the given differential equation.
- b. Based on an inspection of the direction field, describe how solutions behave for large t.
- c. Find the general solution of the given differential equation, and use it to determine how solutions behave as $t \to \infty$.

1.
$$y' + 3y = t + e^{-2t}$$

2.
$$y' + y = te^{-t} + 1$$

3.
$$y' + \frac{1}{t}y = 3\cos(2t)$$
, $t > 0$

4.
$$ty' - y = t^2 e^{-t}, \quad t > 0$$

5.
$$y' + y = 5\sin(2t)$$

Find the solution of the given initial value problems

6.
$$y' - y = 2te^{2t}$$
, $y(0) = 1$

7.
$$y' + 2y = te^{-2t}$$
, $y(1) = 0$

8.
$$y' + \frac{2}{t}y = \frac{\cos(t)}{t^2}$$
, $y(\pi) = 0$, $t > 0$

9.
$$ty' + (t+1)y = t$$
, $y(\ln 2) = 1$, $t > 0$

2.2 Separable Differential Equations

In each of the following questions, solve the given differential equation.

1.
$$y' + y^2 \sin(x) = 0$$

2.
$$y' = \cos^2(x)\cos^2(2y)$$

3.
$$xy' = (1 - y^2)^{1/2}$$

4.
$$\frac{dy}{dx} = \frac{-x}{y}$$

In each of the following questions

- a. Find the solution of the given initial value problem in explicit form.
- b. Plot the graph of the solution.
- c. Determine (at least approximately) the interval in which the solution is defined.

5.
$$y' = (1 - 2x)/y$$
, $y(1) = -2$

6.
$$xdx + ye^{-x}dy = 0, y(0) = 1$$

7.
$$y' = xy^3(1+x^2)^{-1/2}, y(0) = 1$$

8.
$$y' = 2x/(1+2y), y(2) = 0$$

9. Solve the initial value problem

$$y' = \frac{3x^2}{3y^2 - 4}, \quad y(1) = 0$$

and determine the interval in which the solution is valid.

Hint: To find the interval of definition, look for points where the integral curve has a vertical tangent.

10. Solve the equation

$$\frac{dy}{dx} = \frac{ay+b}{cy+d},$$

where a, b, c, and d are constants.

11. Solve the equation

$$\frac{dy}{dx} = \frac{y - 4x}{x - y},$$

where a, b, c, and d are constants.

12. Solve the following equations

(a)
$$ydx = 2(x+y)dy$$

(b)
$$(y^2 + yx)dx = x^2dy$$

(c)
$$\frac{dy}{dx} = \frac{x+3y}{3x+y}$$

(d)
$$(x^2 + 2y^2)dx = xydy, y(-1) = 1.$$

2.4 Difference Between Linear and Non Linear Differential equations

Exercise 1:

Solve the following equations:

1.
$$xy' + y = \frac{1}{y^2}$$
;

2.
$$xy' - (1+x)y = xy^2$$
;

3.
$$y^{\frac{1}{2}}y' + y^{\frac{3}{2}} = 1$$
, $y(0) = 4$.

Exercises on Chapter 3

3.1 Homogeneous Equations with Constant Coefficients

Exercise 1:

Find the general solution of the given differential equation.

- 1. y'' + 2y' 3y = 0
- 2. 6y'' y' y = 0
- 3. 4y'' 9y = 0

Exercise 2:

Find the solution of the given initial value problem.

- 1. y'' + 4y' + 3y = 0, y(0) = 2, y'(0) = -1
- 2. 2y'' + y' 4y = 0, y(0) = 0, y'(0) = 1
- 3. y'' + 8y' 9y = 0, y(1) = 1, y'(1) = 0

Exercise 3:

Find a differential equation whose general solution is $y = c_1 e^{x^2} + c_2 e^{-x^2}$.

3.2 Solutions of Linear Homogeneous Equations; the Wronskian

Exercise 4:

Find the Wronskian of the given pair of functions.

1.
$$\cos(t)$$
, $\sin(t)$

- 2. e^{-2t} , te^{-2t}
- 3. $e^t \sin(t)$, $e^t \cos(t)$

Exercise 5:

Determine the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution. Do not attempt to find the solution.

- 1. t(t-4)y'' + 3ty' + 4y = 2, y(3) = 0, y'(3) = -1
- 2. $y'' + (\cos(t))y' + 3(\ln|t|)y = 0$, y(2) = 3, y'(2) = 1

Exercise 6:

- 1. Verify that $y_1(t) = t^2$ and $y_2(t) = t^{-1}$ are two solutions of the differential equation $t^2y'' 2y = 0$ for t > 0. Then show that $y = c_1t^2 + c_2t^{-1}$ is also a solution of this equation for any c_1 and c_2 .
- 2. If the Wronskian W of f and g is $3e^{4t}$, and if $f(t) = e^{2t}$, find g(t).

Exercise 7:

Find the fundamental set of solutions specified by Theorem 3.2.5 for the given differential equation and initial point. y'' + 4y' + 3y = 0, $t_0 = 1$

Exercise 8:

Verify that the functions y_1 and y_2 are solutions of the given differential equation. Do they constitute a fundamental set of solutions? $x^2y''-x(x+2)y'+(x+2)y=0$, x>0; $y_1(x)=x$, $y_2(x)=xe^x$

3.3 Complex Roots of the Characteristic Equation

Exercise 9:

Find the general solution of the given differential equation.

1.
$$y'' - 2y' + 2y = 0$$

$$2. \ y'' + 2y' + 2y = 0$$

3.
$$9y'' + 9y' - 4y = 0$$
.

Exercise 10:

Find the solution of the given initial value problem.

1.
$$y'' - 2y' + 5y = 0$$
, $y(\pi/2) = 0$, $y'(\pi/2) = 2$

2.
$$y'' + y = 0$$
, $y(\pi/3) = 2$, $y'(\pi/3) = -4$.

Exercise 11:

Use the method of Problem 25 to solve the given equation for t > 0.

1.
$$t^2y'' + ty' + y = 0$$

2.
$$t^2y'' - 4ty' - 6y = 0$$

3.
$$t^2y'' + 7ty' + 10y = 0$$

Exercise 12:

Determine the general solution of the given differential equation that is valid in any interval not including the singular point.

1.
$$x^2y'' + 4xy' + 2y = 0$$

2.
$$(x+1)^2y'' + 3(x+1)y' + 0.75y = 0$$

3.
$$x^2y'' - 3xy' + 4y = 0$$

4.
$$x^2y'' - xy' + y = 0$$

5.
$$x^2y'' + 6xy' - y = 0$$

6.
$$2x^2y'' - 4xy' + 6y = 0$$

7.
$$x^2y'' - 5xy' + 9y = 0$$

8.
$$(x-2)^2y'' + 5(x-2)y' + 8y = 0$$

Exercise 13:

Find the solution of the given initial-value problem.

$$4x^2y'' + 8xy' + 17y = 0$$
, $y(1) = 2$, $y'(1) = -3$.

3.4 Repeated Roots; Reduction of Order

Exercise 14:

Find the general solution of the given differential equation.

1.
$$y'' - 2y' + y = 0$$

$$9y'' + 6y' + y = 0$$

3.
$$y'' - 6y' + 9y = 0$$

4.
$$16y'' + 24y' + 9y = 0$$

Exercise 15:

Solve the given initial value problem. Sketch the graph of the solution and describe its behavior for increasing t.

1.
$$9y'' - 12y' + 4y = 0$$
, $y(0) = 2$, $y'(0) = -1$

2.
$$y'' + 4y' + 4y = 0$$
, $y(-1) = 2$, $y'(-1) = 1$

Exercise 16:

Use the method of reduction of order to find a second solution of the given differential equation.

1.
$$t^2y'' + 2ty' - 2y = 0, t > 0; y_1(t) = t$$

2.
$$xy'' - y' + 4x^3y = 0$$
, $x > 0$; $y_1(x) = \sin(x^2)$

3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Exercise 17:

Find the general solution of the given differential equation.

1.
$$y'' - 2y' - 3y = 3e^{2t}$$

2.
$$y'' - y' - 2y = -2t + 4t^2$$

3.
$$y'' + 2y' + y = 2e^{-t}$$

Exercise 18:

Find the solution of the given initial value problem.

1.
$$y'' + 4y = t^2 + 3e^t$$
, $y(0) = 0$, $y'(0) = 2$

2.
$$y'' - 2y' + y = te^t + 4$$
, $y(0) = 1$, $y'(0) = 1$

3.
$$y'' + 2y' + 5y = 4e^{-t}\cos(2t)$$
, $y(0) = 1$, $y'(0) = 0$

3.6 Variation of Parameters

Exercise 19:

Use the method of variation of parameters to find a particular solution of the given differential equation. Then check your answer by using the method of undetermined coefficients. $y'' - y' - 2y = 2e^{-t}$

Exercise 20:

Find the general solution of the given differential equation.

1.
$$y'' + 4y' + 4y = t^{-2}e^{-2t}, \quad t > 0$$

2.
$$4y'' + y = 2\sec(t/2), \quad -\pi < t < \pi$$

3.
$$y'' - 2y' + y = e^t/(1+t^2)$$

Exercise 21:

Verify that the given functions y_1 and y_2 satisfy the corresponding homogeneous equation; then find a particular solution of the given nonhomogeneous equation.

10.
$$t^2y'' - 2y = 3t^2 - 1$$
, $t > 0$; $y_1(t) = t^2$, $y_2(t) = t^{-1}$

11.
$$x^2y'' - 3xy' + 4y = x^2 \ln(x)$$
, $x > 0$; $y_1(x) = x^2$, $y_2(x) = x^2 \ln(x)$

12.
$$x^2y'' + xy' + (x^2 - \frac{1}{4})y = 3x^{3/2}\sin(x), \quad x > 0; \quad y_1(x) = x^{-1/2}\sin(x), \quad y_2(x) = x^{-1/2}\cos(x)$$

Exercises on Chapter 4

4-1 General Theory of n^{th} Order Linear Differential Equations

Exercise 1:

Determine whether the given functions are linearly dependent or linearly independent. If they are linearly dependent, find a linear relation among them.

1.
$$f_1(t) = 2t - 3$$
, $f_2(t) = t^2 + 1$, $f_3(t) = 2t^2 - t$

2.
$$f_1(t) = 2t - 3$$
, $f_2(t) = 2t^2 + 1$, $f_3(t) = 3t^2 + t$

3.
$$f_1(t) = 2t - 3$$
, $f_2(t) = t^2 + 1$, $f_3(t) = 2t^2 - t$, $f_4(t) = t^2 + t + 1$

Exercise 2:

Verify that the given functions are solutions of the differential equation, and determine their Wronskian.

8.
$$y^{(4)} + y'' = 0$$
; 1, t , $\cos(t)$, $\sin(t)$

9.
$$y''' + 2y'' - y' - 2y = 0$$
; e^t , e^{-t} , e^{-2t}

10.
$$x^3y''' + x^2y'' - 2xy' + 2y = 0;$$
 $x, x^2, 1/x$

4.2 Homogeneous Differential Equations with Constant Coefficients

Exercise 3:

Find the general solution of the given differential equation.

1.
$$y''' - y'' - y' + y = 0$$

2.
$$y''' - 3y'' + 3y' - y = 0$$

$$3. \ y^{(4)} - 4y''' + 4y'' = 0$$

4.
$$y^{(4)} + 2y'' + y = 0$$

5.
$$y''' + 5y'' + 6y' + 2y = 0$$

Exercise 4:

Verify that $y(t) = 3e^{-t} + \frac{1}{2}\cos(t) - \sin(t)$ is the solution to $y^{(4)} - y = 0$, $y(0) = \frac{7}{2}$, y'(0) = -4, $y''(0) = \frac{5}{2}$, y'''(0) = -2.

4-3 The Method of Undetermined Coefficients

Exercise 5:

Determine the general solution of the given differential equation.

1.
$$y''' - y'' - y' + y = 2e^{-t} + 3$$

2.
$$y^{(4)} - y = 3t + \cos(t)$$

3.
$$y^{(4)} - 4y'' = t^2 + e^t$$

Exercise 6:

Find the solution of the given initial-value problem. Then plot a graph of the solution.

1.
$$y''' + 4y' = t$$
; $y(0) = y'(0) = 0$, $y''(0) = 1$

2.
$$y^{(4)} + 2y''' + y'' + 8y' - 12y = 12\sin(t) - e^{-t}$$
; $y(0) = 3$, $y'(0) = 0$, $y''(0) = -1$, $y'''(0) = 2$

1 Systems of Linear Differential Equations

Exercise 7:

Solve the following systems

1.
$$\begin{cases} x' = 4x + 7y \\ y' = x - 2y \end{cases}$$

2.
$$\begin{cases} x' = -5x - y \\ y' = 4x - y \end{cases}, x(1) = 0, y(1) = 1.$$

3.
$$\begin{cases} x' = 4y + 1 \\ y' = -x + 2. \end{cases}$$

4.
$$\begin{cases} (D^2 + 5)x - 2y = 0 \\ -2x + (D^2 + 2)y = 0 \end{cases}$$

5.
$$\begin{cases} Dx + D^2y &= e^{3t} \\ (D+1)x + (D-1)y &= 4e^{3t} \end{cases}$$

6.
$$\begin{cases} (2D^2 - D - 1)x - (2D + 1)y &= 1\\ (D - 1)x + Dy &= -1. \end{cases}$$

Exercises on Chapter 5

5.1 Review on Power Series

Exercise 1:

Rewrite the given expression as a single power series whose generic term involves x^n .

1.

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$

2.

$$x\sum_{n=1}^{\infty}na_nx^{n-1} + \sum_{k=0}^{\infty}a_kx^k$$

3.

$$x\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty} a_n x^n$$

5.2 Series Solutions Near an Ordinary Point, Part I

Exercise 2:

- (a) Seek power series solutions of the given differential equation about the given point x_0 ; find the recurrence relation that the coefficients must satisfy.
- (b) Find the first four nonzero terms in each of two solutions y_1 and y_2 (unless the series terminates sooner).
- (c) By evaluating the Wronskian $W[y_1, y_2](x_0)$, show that y_1 and y_2 form a fundamental set of solutions.

(d) If possible, find the general term in each solution.

1.
$$y'' - y = 0$$
, $x_0 = 0$

2.
$$y'' - xy' - y = 0$$
, $x_0 = 0$

3.
$$y'' + k^2 x^2 y = 0$$
, $x_0 = 0$, k a constant

4.
$$y'' + xy' + 2y = 0$$
, $x_0 = 0$

5.
$$(3-x^2)y'' - 3xy' - y = 0$$
, $x_0 = 0$

6.
$$2y'' + (x+1)y' + 3y = 0$$
, $x_0 = 2$

Exercise 3:

- (a) Find the first five nonzero terms in the solution of the given initial-value problem.
- (b) Plot the four-term and the five-term approximations to the solution on the same axes.
- (c) From the plot in part b, estimate the interval in which the four-term approximation is reasonably accurate.

1.
$$y'' + xy' + 2y = 0$$
, $y(0) = 4$, $y'(0) = -1$; see Problem 7

2.
$$(1-x)y'' + xy' - y = 0$$
, $y(0) = -3$, $y'(0) = 2$

6.1 Definition of the Laplace Transform

Exercise 1:

Find the Laplace transform of each of the following functions:

- 1. f(t) = t;
- 2. $f(t) = t^2$;
- 3. $f(t) = t^n$, where n is a positive integer.

Exercise 2:

Find the Laplace transform of $f(t) = \cos(at)$, where a is a real constant.

Recall that
$$\cosh(bt) = \frac{1}{2}(e^{bt} + e^{-bt})$$
 and $\sinh(bt) = \frac{1}{2}(e^{bt} - e^{-bt}).$

Exercise 3:

Use the linearity of the Laplace transform to find the Laplace transform of the given function; a and b are real constants.

- 1. $f(t) = \cosh(bt)$;
- $2. f(t) = \sinh(bt).$

Recall that
$$\cos(bt) = \frac{1}{2}(e^{ibt} + e^{-ibt})$$
 and $\sin(bt) = \frac{1}{2}(e^{ibt} - e^{-ibt}).$

Exercise 4:

Use the linearity of the Laplace transform to find the Laplace transform of the function $f(t) = \cosh(bt)$; b is a real constant. Assume that the necessary elementary integration formulas extend to this case.

Exercise 5:

Use integration by parts to find the Laplace transform of the given function; n is a positive integer and a is a real constant.

- 1. $f(t) = te^{at}$;
- 2. $f(t) = t\sin(at)$.

Exercise 6:

Find the Laplace transform of the given function.

1.
$$f(t) = \begin{cases} 1 & t \in [0, \pi) \\ 0 & t \in [\pi, \infty). \end{cases}$$

2.
$$f(t) = \begin{cases} t & t \in [0,1) \\ 2-t & t \in [1,2) \\ 0 & t \in [2,\infty). \end{cases}$$

6.2 Solution of Initial Value Problems

Exercise 1:

Find the inverse Laplace transform of the given function.

1.
$$F(s) = \frac{3}{s^2 + 4}$$
;

2.
$$F(s) = \frac{4}{(s-1)^3}$$
;

3.
$$F(s) = \frac{2s+2}{s^2+2s+5}$$
;

4.
$$F(s) = \frac{8s^2 - 4s + 12}{s(s^2 + 4)};$$

Exercise 2:

Use the Laplace transform to solve the given initial value problem.

1.
$$y'' + 3y' + 2y = 0$$
, $y(0) = 1, y'(0) = 0$;

2.
$$y'' - 2y' + 4y = 0$$
, $y(0) = 2$, $y'(0) = 0$;

3.
$$y'' + 2y' + 5y = 0$$
, $y(0) = 2$, $y'(0) = -1$;

4.
$$y'' - 2y' + 2y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

6.3 Step Functions

Exercise 1:

In each of the following question:

- a Sketch the graph of the given function.
- b Express f(t) in terms of the unit step function $u_c(t)$.

1.
$$f(t) = \begin{cases} 0 & t \in [0,3) \\ -2 & t \in [3,5) \\ 2 & t \in [5,7) \\ 1 & t \ge 7. \end{cases}$$

2.
$$f(t) = \begin{cases} t & t \in [0, 2) \\ t & t \in [2, 5) \\ 7 - t & t \in [5, 7) \\ 0 & t \ge 7. \end{cases}$$

Exercise 2:

Find the inverse Laplace transform of the given function.

1.
$$F(s) = \frac{3!}{(s-2)^4}$$
;

2.
$$F(s) = \frac{e^{-2s}}{s^2 + s - 2}$$
;

3.
$$F(s) = \frac{2(s-1)e^{-2s}}{s^2 - 2s + 2}$$
.

Exercise 3:

Suppose that $F(s) = \mathcal{L}(f(t))$ exists for $s > a \ge 0$.

1. Show that if c is a positive constant, then

$$\mathcal{L}(f(ct)) = \frac{1}{c}F(\frac{s}{c}), \quad s > ca.$$

2. Show that if k is a positive constant, then

$$\mathcal{L}^{-1}F(ks) = \frac{1}{k}f(\frac{t}{k}).$$

3. Show that if a and b are constants with a > 0, then

$$\mathcal{L}^{-1}(F(as+b)) = \frac{1}{a}e^{-\frac{b}{a}t}f(\frac{t}{a}).$$

Exercise 4:

Find the inverse Laplace transform of the following function $F(s) = \frac{2s+1}{4s^2+4s+5}$;

Find the Laplace transform of the given function $f(t) = \begin{cases} 1 & t \in [0, 1) \\ 0 & t \ge 1. \end{cases}$