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Figure 3.2 Death rate per 100,000 men (on a logarithmic scale) plotted against age.

between yi/ni and age group i is approximately exponential. Therefore, a
possible model is

E(Yi) = µi = nie
θi ; Yi ∼ Po(µi),

where i = 1 for the age group 30–34 years, i = 2 for 35–39 years, . . . , i = 8
for 65–69 years.

This can be written as a generalized linear model using the logarithmic link
function

g(µi) = log µi = log ni + θi,

which has the linear component xT
i β with xT

i = [log ni i] and β =

[
1
θ

]
.

3.6 Exercises

3.1 The following relationships can be described by generalized linear models.
For each one, identify the response variable and the explanatory variables,
select a probability distribution for the response (justifying your choice)
and write down the linear component.

(a) The effect of age, sex, height, mean daily food intake and mean daily
energy expenditure on a person’s weight.

(b) The proportions of laboratory mice that became infected after expo-
sure to bacteria when five different exposure levels are used and 20
mice are exposed at each level.

(c) The relationship between the number of trips per week to the super-
market for a household and the number of people in the household,
the household income and the distance to the supermarket.

3.2 If the random variable Y has the Gamma distribution with a scale
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parameter β, which is the parameter of interest, and a known shape pa-
rameter α, then its probability density function is

f(y; β) =
βα

Γ(α)
yα−1e−yβ.

Show that this distribution belongs to the exponential family and find
the natural parameter. Also using results in this chapter, find E(Y ) and
var(Y ).

3.3 Show that the following probability density functions belong to the expo-
nential family:

(a) Pareto distribution f(y; θ) = θy−θ−1.

(b) Exponential distribution f(y; θ) = θe−yθ.

(c) Negative Binomial distribution

f(y; θ) =

(
y + r − 1

r − 1

)
θr (1 − θ)

y
,

where r is known.

3.4 Use results (3.9) and (3.12) to verify the following results:

(a) For Y ∼ Po(θ), E(Y ) = var(Y ) = θ.

(b) For Y ∼ N(µ, σ2), E(Y ) = µ and var(Y ) = σ2.

(c) For Y ∼ Bin(n, π), E(Y ) = nπ and var(Y ) = nπ(1 − π).

3.5 (a) For a Negative Binomial distribution Y ∼ NBin(r, θ), find E(Y ) and
var(Y ).

(b) Notice that for the Poisson distribution E(Y ) = var(Y ), for the Bino-
mial distribution E(Y ) > var(Y ) and for the Negative Binomial dis-
tribution E(Y ) < var(Y ). How might these results affect your choice
of a model?

3.6 Do you consider the model suggested in Example 3.5.3 to be adequate
for the data shown in Figure 3.2? Justify your answer. Use simple linear
regression (with suitable transformations of the variables) to obtain a
model for the change of death rates with age. How well does the model
fit the data? (Hint: Compare observed and expected numbers of deaths
in each groups.)

3.7 Consider N independent binary random variables Y1, . . . , YN with

P (Yi = 1) = πi and P (Yi = 0) = 1 − πi.

The probability function of Yi, the Bernoulli distribution B(π), can be
written as

πyi

i (1 − πi)
1−yi ,

where yi = 0 or 1.
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(a) Show that this probability function belongs to the exponential family
of distributions.

(b) Show that the natural parameter is

log

(
πi

1 − πi

)
.

This function, the logarithm of the odds πi/(1 − πi), is called the
logit function.

(c) Show that E(Yi) = πi.

(d) If the link function is

g(π) = log

(
π

1 − π

)
= xT β,

show that this is equivalent to modelling the probability π as

π =
ex

T β

1 + exT β
.

(e) In the particular case where xT β = β1 + β2x, this gives

π =
eβ1+β2x

1 + eβ1+β2x
,

which is the logistic function.

Sketch the graph of π against x in this case, taking β1 and β2 as
constants. How would you interpret this graph if x is the dose of an
insecticide and π is the probability of an insect dying?

3.8 Is the extreme value (Gumbel) distribution, with probability density
function

f(y; θ) =
1

φ
exp

{
(y − θ)

φ
− exp

[
(y − θ)

φ

]}

(where φ > 0 is regarded as a nuisance parameter) a member of the
exponential family?

3.9 Suppose Y1, . . . , YN are independent random variables each with the Pareto
distribution and

E(Yi) = (β0 + β1xi)
2.

Is this a generalized linear model? Give reasons for your answer.

3.10 Let Y1, . . . , YN be independent random variables with

E(Yi) = µi = β0 + log (β1 + β2xi) ; Yi ∼ N(µ, σ2)

for all i = 1, . . . , N . Is this a generalized linear model? Give reasons for
your answer.

3.11 For the Pareto distribution, find the score statistics U and the information
I = var(U). Verify that E(U) = 0.

3.12 Some more relationships between distributions—see Figure 3.3.
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Figure 3.3 Some relationships among distributions in the exponential family. Dotted
lines indicate an asymptotic relationship and solid lines a transformation.

(a) Show that the Exponential distribution Exp(θ) is a special case of the
Gamma distribution G(α, β).

(b) If X has the Uniform distribution U[0, 1], that is, f(x) = 1 for 0 <
x < 1, show that Y = −θ log X has the distribution Exp(θ).

(c) Use the moment generating functions (or other methods) to show

i. Bin(n, π) → Po(λ) as n → ∞.
ii. NBin(r, θ) → Po(r(1 − θ)) as r → ∞.

(d) Use the Central Limit Theorem to show

i. Po(λ) → N(µ, µ) for large µ.
ii. Bin(n, π) → N(nπ, nπ(1 − π)) for large n, provided neither nπ

nor nπ(1 − π) is too small.
iii. G(α, β) → N(α/β, α/β2) for large α.




