254 MATH (Numerical Methods)

Textbook:

An Introduction to Numerical Methods and Analysis Using MATLAB

by Rizwan Butt.

Chapter Sections
 Exercises

1) Find the absolute and relative errors in approximating π by 3.1416. What are the corresponding errors in the approximation $100 \pi \approx$ 314. 16?

1
$1.2,1.3$
2) Calculate the error, relative error, and number of significant digits in the following approximations, with $\boldsymbol{p} \approx \boldsymbol{x}$:
a) $x=25.234, p=25.255$.
b) $x=e, p=19 / 7$.
c) $x=\sqrt{2}, p=1.414$.

2	$\begin{gathered} 2.1,2.2,2.3 \\ 2.4,2.5 \end{gathered}$	Textbook: Example: 2.4, 2.63. Exercises: page 76: 1(a,c), 2(b), 3-15.				
3	$\begin{aligned} & 3.1,3.2,3.3 \\ & 3.4,3.5,3.6 \end{aligned}$ 3.7	Textbook: Example: 3.20, 3.26, 3.41, 3.43, 3.51, 3.55 Exercises: page 178: 2-16. 1) Consider the following system of equations: $\begin{gathered} 4 x_{1}+2 x_{2}+x_{3}=1 \\ x_{1}+7 x_{2}+x_{3}=4 \\ x_{1}+x_{2}+20 x_{3}=7 \end{gathered}$ a) Show that the Jacobi method converges using $\left\\|T_{J}\right\\|_{\infty}<1$. b) Compute the second approximation $x^{(2)}$, starting with $x^{(0)}=$ $[\mathbf{0}, \mathbf{0}, \mathbf{0}]^{T}$. c) Compute an error estimate $\left\\|x-x^{(2)}\right\\|_{\infty}$ for your approximation.				

2) Consider the following system of equations:

$$
\begin{aligned}
& 4 x_{1}+2 x_{2}+x_{3}=11 \\
& -x_{1}+2 x_{2}+\frac{16}{}=3 \\
& 2 x_{1}+x_{2}+4 x_{3}=16
\end{aligned}
$$

a) Show that the Gauss-Seidel method converges using $\left\|T_{G}\right\|_{\infty}<1$.
b) Compute the second approximation $x^{(2)}$, starting with $x^{(0)}=$ $[1,1,1]^{T}$.
c) Compute an error estimate $\left\|x-x^{(2)}\right\|_{\infty}$ for your approximation.
3) Consider the following system of equations:

$$
\begin{array}{rccccc}
4 x_{1} & -2 x_{2} & -x_{3} & = & 1 \\
-x_{1} & + & 4 x_{2}+ & -x_{4} & = & 2 \\
-x_{1} & & +4 x_{3}-x_{4} & =0 \\
& -x_{2} & -x_{3}+4 x_{4} & = & 1
\end{array}
$$

Using $x^{(0)}=0$, how many iterations are required to approximate the solution to within five decimal places using: (a)Jacobi method, (b) GaussSeidel method.

4
4.1, 4.2, 4.3 Textbook: page 236: 1-19.

Textbook: page 293: 1-21.

1) Use the most accurate formula to determine approximations that will complete the following table:

x	$f(x)$	$\mathrm{df} / \mathrm{dx}$
2.1	-1.709847	
2.2	-1.373823	
2.3	-1.11921	
2.4	-0.916014	

2) Evaluate $\int_{0}^{1} e^{x^{2}} d x$ by Simpson's rule choosing h small enough to guarantee five decimal accuracy. How large can h be?

6 6.1, 6.2, 6.3 Textbook: page 316: 3-5.

