CHAPTER 5

Inference

5.8 Exercises

- 5.1 Consider the single response variable Y with $Y \sim Bin(n, \pi)$.
 - (a) Find the Wald statistic $(\hat{\pi} \pi)^T \Im(\hat{\pi} \pi)$, where $\hat{\pi}$ is the maximum likelihood estimator of π and \Im is the information.
 - (b) Verify that the Wald statistic is the same as the score statistic $U^T \mathfrak{I}^{-1} U$ in this case (see Example 5.2.2).
 - (c) Find the deviance

$$2[l(\widehat{\pi}; y) - l(\pi; y)].$$

(d) For large samples, both the Wald/score statistic and the deviance approximately have the χ²(1) distribution. For n = 10 and y = 3, use both statistics to assess the adequacy of the models:
(i) π = 0.1; (ii) π = 0.3; (iii) π = 0.5.

Do the two statistics lead to the same conclusions?

5.2 Consider a random sample Y_1, \ldots, Y_N with the exponential distribution

 $f(y_i; \theta_i) = \theta_i \exp(-y_i \theta_i).$

Derive the deviance by comparing the maximal model with different values of θ_i for each Y_i and the model with $\theta_i = \theta$ for all i.

- 5.3 Suppose Y_1, \ldots, Y_N are independent identically distributed random variables with the Pareto distribution with parameter θ .
 - (a) Find the maximum likelihood estimator $\hat{\theta}$ of θ .
 - (b) Find the Wald statistic for making inferences about θ (Hint: Use the results from Exercise 3.10).
 - (c) Use the Wald statistic to obtain an expression for an approximate 95% confidence interval for θ .

- (d) Random variables Y with the Pareto distribution with the parameter θ can be generated from random numbers U, which are uniformly distributed between 0 and 1 using the relationship $Y = (1/U)^{1/\theta}$ (Evans et al. 2000). Use this relationship to generate a sample of 100 values of Y with $\theta = 2$. From these data calculate an estimate $\hat{\theta}$. Repeat this process 20 times and also calculate 95% confidence intervals for θ . Compare the average of the estimates $\hat{\theta}$ with $\theta = 2$. How many of the confidence intervals contain θ ?
- 5.4 For the leukemia survival data in Exercise 4.2:
 - (a) Use the Wald statistic to obtain an approximate 95% confidence interval for the parameter β_1 .
 - (b) By comparing the deviances for two appropriate models, test the null hypothesis $\beta_2 = 0$ against the alternative hypothesis $\beta_2 \neq 0$. What can you conclude about the use of the initial white blood cell count as a predictor of survival time?

88