alternate solution of **Example 2**: The quantity ε is assigned to cell(2,4), which has the minimum transportation cost = 0.

Example2: (degenerate) A company has factories at S1, S2 and S3 which supply to warehouses at D1, D2, D3 and D4. Weekly factory capacities are 18, 3 and 30 units, respectively. Weekly warehouse requirement are 21, 15, 9 and 6 units, respectively. Unit shipping costs (in Dollar) are as follows:

	D ₁	D ₂	D ₃	D ₄	Supply
Destination					
Sources					
S ₁	8	21	44	28	18
S ₂	4	0	24	4	3
S ₃	20	32	60	36	30
Demand	21	15	9	6	

Answer:

	D ₁	D ₂	D ₃	D ₄	Supply		
Destination							
Sources							
S ₁	18	21	44	28	18	0	
S ₂	3	0	24	4	3	0	
S ₃	20	32	60	36			
		15	9	6	30	15	6 0
Demand	21	15	9	6	51 51		
	3	0	0	0	•		
	0						

Initial feasible solution (IBFS) is:

$$X_{11} = 18$$
, $X_{21} = 3$, $X_{32} = 15$, $X_{33} = 9$, $X_{34} = 6$

The minimum total transportation cost:

$$TTC = Z = 8 * 18 + 4 * 3 + 32 * 15 + 60 * 6 = 1392$$
\$

Here, the number of allocated cells = 5, which is less than to $\mathbf{m} + \mathbf{n} - \mathbf{1} = \mathbf{3} + \mathbf{4} - \mathbf{1} = \mathbf{6}$ Therefore, this solution is degenerate.

The quantity **d** is assigned to that unoccupied cell, which has the minimum transportation cost.

The quantity d is assigned to cell(2,4), which has the minimum transportation cost = 4.

Optimality test using MODI method... $\delta_{kj} = v_j + u_i - C_{kj}$,

	Iteration-1	V ₁ = 36	V ₂ = 32	V ₃ = 60	V ₄ = 36	
		D ₁	D ₂	D ₃	D ₄	Supply
	Destination					
	Sources					
U ₁ = -28	S ₁	8	21	44	28	18
		18	δ= -17	δ= -12	δ= -20	10
U ₂ = -32	S ₂	- 4	0	24	+ 4	•
		↑ 3	δ= 0	δ= 4	d=0	3
U ₃ = 0	S ₃	+ 20	32	60	- 36	
		δ= 16	15	9	6	30
	Demand	21	15	9	6	51 51

To Find u_i and v_j for all occupied cells (i, j), where $v_j + u_i = C_{ij}$

- Substituting, u_3 =0, we get
- $c_{32} = u_3 + v_2 \Rightarrow v_2 = c_{32} u_3 \Rightarrow v_2 = 32 0 = 32$
- $c_{33} = u_3 + v_3 \Rightarrow v_3 = c_{33} u_3 \Rightarrow v_3 = 60 0 \Rightarrow v_3 = 60$
- $c_{34} = u_3 + v_4 \Rightarrow v_4 = c_{34} u_3 \Rightarrow v_4 = 36 0 = 36$
- $c_{24} = u_2 + v_4 \Rightarrow u_2 = c_{24} v_4 \Rightarrow u_2 = 4 36 = -32$ $c_{21} = u_2 + v_1 \Rightarrow v_1 = c_{21} u_2 \Rightarrow v_1 = 4 (-32) = 36$ $c_{11} = u_1 + v_1 \Rightarrow u_1 = c_{11} v_1 \Rightarrow u_1 = 8 36 = -28$

We note that not all $\delta_{kj} \leq 0$, so we don't reach to optimal solution yet.

	Iteration-2	V ₁ = 20	V ₂ = 32	V ₃ = 60	V ₄ = 36	
		D_1	D ₂	D ₃	D ₄	Supply
	Destination					
	Sources					
U ₁ = -12	S ₁	- 8	21	+ 44	28	18
		18	δ= -1	δ= 4	δ= - 4	10
U ₂ = -32	S ₂	4	0	24	4	2
		δ= -16	δ= 0	δ= 4	3	3
U ₃ = 0	S ₃	+ 20	32	- 60	36	
		3	15	9	3	30

Demand 21 15 9 6	<i>- - - - - - - - - -</i>	Demand
------------------	----------------------------	--------

We note that not all $\delta_{kj} \leq 0$, so we don't reach to optimal solution yet.

	Iteration-3	V ₁ = 20	V ₂ = 32	V ₃ = 56	V ₄ = 36	
		D ₁	D ₂	D ₃	D ₄	Supply
	Destination					
	Sources					
U ₁ = -12	S ₁	8	21	44	28	18
		9	δ= -1	9	δ= - 4	10
U ₂ = -32	S ₂	4	0	24	4	2
		δ= -16	δ= 0	δ= 0	3	3
U ₃ = 0	S ₃	20	32	60	36	
		12	15	δ= -4	3	30
	Demand	21	15	9	6	51 51

We note that all $\delta_{kj} \leq 0,$ so final optimal solution is arrived

The minimum total transportation cost:

$$TTC = Z = 8(9) = 44(9) + 4(3) + 20(12) + 32(15) + 36(3) = 1308$$
\$

Note: alternate solution is available with unoccupied cell (2,2), but with the same optimal value.