

Math 204

Differential Equations

Exercises

Fourier Series and Fourier Integral

Ibraheem Alolyan

King Saud University

Fourier Series and Fourier Integral (Exercises)

1 Fourier Series

2 Fourier Integral

Fourier Series

Fourier Series

Definition (Fourier Series)

If f and f' are piecewise continuous on the interval $[-L, L]$, or f is defined outside the interval $[-L, L]$ so that it is periodic with period $2L$, then f has a Fourier series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \left(\frac{n\pi x}{L} \right) + b_n \sin \left(\frac{n\pi x}{L} \right) \right)$$

where the coefficients are given by:

$$a_0 = \frac{1}{L} \int_{-L}^L f(x) dx, \quad a_n = \frac{1}{L} \int_{-L}^L f(x) \cos \left(\frac{n\pi x}{L} \right) dx,$$

$$b_n = \frac{1}{L} \int_{-L}^L f(x) \sin \left(\frac{n\pi x}{L} \right) dx.$$

Convergence of Fourier Series

The Fourier series converges to $f(x)$ if f is continuous at x , and to

$$\frac{f(x^+) + f(x^-)}{2}$$

if f is discontinuous at x .

For $x = L$ and $x = -L$, the series converges to

$$\frac{f(-L^+) + f(L^-)}{2}$$

Symmetric Functions

- If $f(x)$ is even, then Fourier coefficients

$$a_0 = \frac{2}{L} \int_0^L f(x) dx,$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \quad n = 1, 2, \dots$$

$$b_n = 0, \quad n = 1, 2, \dots$$

- If $f(x)$ is odd, then Fourier coefficients

$$a_0 = 0, \quad n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \quad n = 1, 2, \dots$$

Fourier Cosine and Sine Series

If a function f is defined on $(0, L)$, and we want to represent this function by a trigonometric series, then we can extend $f(x)$ to an odd function f_o

$$f_o(x) = \begin{cases} f(x), & 0 < x < L, \\ -f(-x), & -L < x < 0. \end{cases}$$

with $f_o(x + 2L) = f_o(x)$ which can be approximated by sin series

Fourier Cosine and Sine Series

we can extend $f(x)$ to an even function f_e

$$f_e(x) = \begin{cases} f(x), & 0 < x < L, \\ f(-x), & -L < x < 0. \end{cases}$$

with $f_e(x + 2L) = f_e(x)$ which can be approximated by cos series

Fourier Cosine Series

Definition

Let $f(x)$ be piecewise continuous function on the interval $[0, L]$. The Fourier cosine series of f on $[0, L]$ is

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L},$$

where

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx, \quad n = 0, 1, 2, \dots$$

Fourier Sine Series

Definition

Let $f(x)$ be piecewise continuous function on the interval $[0, L]$. The Fourier sine series of f on $[0, L]$ is

$$\sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L},$$

where

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx, \quad n = 1, 2, \dots$$

Fourier Series

Example

* Find the Fourier series to the 2π -periodic function

$$f(x) = \begin{cases} x, & 0 \leq x \leq \pi, \\ 0, & -\pi < x < 0 \end{cases}$$

Sketch on $(-3\pi, 3\pi)$, and deduce the values of

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$

Fourier Series

Example

* Find the Fourier series to the 2π -periodic function

$$f(x) = \begin{cases} x, & 0 \leq x \leq \pi, \\ 0, & -\pi < x < 0 \end{cases}$$

Sketch on $(-3\pi, 3\pi)$, and deduce the values of

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$

$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos((2n+1)x) + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx$$

$$x = 0, \quad \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8},$$

$$x = \frac{\pi}{2}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

Fourier Series

Example

* Find the Fourier cosine series of

$$f(x) = \sin x, \quad x \in (0, \pi)$$

and deduce the values of

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4n^2 - 1}$$

Example

* Sketch 2π -periodic function f and obtain Fourier series

$$f(x) = \begin{cases} -\cos x, & -\pi < x < 0, \\ \cos x, & 0 < x < \pi \end{cases}$$

and deduce the value of

$$\sum_{n=1}^{\infty} \frac{n \sin 2n}{4n^2 - 1}$$

Fourier Series

Example

* Sketch 2π -periodic function f and obtain Fourier series

$$f(x) = \begin{cases} -\cos x, & -\pi < x < 0, \\ \cos x, & 0 < x < \pi \end{cases}$$

and deduce the value of

$$\sum_{n=1}^{\infty} \frac{n \sin 2n}{4n^2 - 1}$$

$$f(x) = \frac{8}{\pi} \sum_{n=0}^{\infty} \frac{n}{4n^2 - 1} \sin 2nx$$

$$x = 1, \quad \sum_{n=1}^{\infty} \frac{n \sin 2n}{4n^2 - 1} = \frac{\pi}{8} \cos 1$$

Fourier Series

Example

- * If $f : \mathbb{R} \rightarrow \mathbb{R}$ is 2π -periodic odd function

$$f(x) = x(\pi - x) \quad x \in [0, \pi]$$

Sketch the graph of f on $[-2\pi, 2\pi]$. Then find Fourier series of f and deduce the value of

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3}$$

Hint: $\sin(2n+1)\frac{\pi}{2} = (-1)^n$

Fourier Series

Example

- * If $f : \mathbb{R} \rightarrow \mathbb{R}$ is 2π -periodic odd function

$$f(x) = x(\pi - x) \quad x \in [0, \pi]$$

Sketch the graph of f on $[-2\pi, 2\pi]$. Then find Fourier series of f and deduce the value of

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3}$$

Hint: $\sin(2n+1)\frac{\pi}{2} = (-1)^n$

$$f(x) = \frac{8}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^3} \sin(2n+1)x$$

$$x = \frac{\pi}{2}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{\pi^3}{32}$$

Fourier Integral

Fourier Integral

Definition

The Fourier Integral of a function f defined on $(-\infty, \infty)$ is given by

$$f(x) = \frac{1}{\pi} \int_0^{\infty} [A(\lambda) \cos(\lambda x) + B(\lambda) \sin(\lambda x)] d\lambda$$

$$A(\lambda) = \int_{-\infty}^{\infty} f(t) \cos(\lambda t) dt$$

$$B(\lambda) = \int_{-\infty}^{\infty} f(t) \sin(\lambda t) dt$$

$$f(x) = \frac{1}{\pi} \int_0^{\infty} \int_{-\infty}^{\infty} f(t) \cos(\lambda t - \lambda x) dt d\lambda$$

Fourier Integral

Theorem

If f is absolutely integrable

$$\int_{-\infty}^{\infty} |f(x)|dx < \infty$$

and f, f' are piecewise continuous on every finite interval, then the Fourier integral of f converges to $f(x)$ at a point of continuity and converges to

$$\frac{f(x^+) + f(x^-)}{2}$$

at a point of discontinuity.

Fourier Sine and Cosine Integrals

If f is an odd function on $(-\infty, \infty)$, then

$$A(\lambda) = \int_{-\infty}^{\infty} f(t) \cos(\lambda t) dt = 0$$

$$B(\lambda) = \int_{-\infty}^{\infty} f(t) \sin(\lambda t) dt = 2 \int_0^{\infty} f(t) \sin(\lambda t) dt$$

Fourier Sine and Cosine Integrals

If f is an even function on $(-\infty, \infty)$, then

$$A(\lambda) = \int_{-\infty}^{\infty} f(t) \cos(\lambda t) dt = 2 \int_0^{\infty} f(t) \cos(\lambda t) dt$$

$$B(\lambda) = \int_{-\infty}^{\infty} f(t) \sin(\lambda t) dt = 0$$

Fourier Integral

Example

* Let

$$f(x) = \begin{cases} |x|, & |x| \leq 2 \\ 0, & |x| > 2 \end{cases}$$

Sketch the graph of f . Find the Fourier integral of f and deduce that

$$\int_0^\infty \frac{\sin 2\lambda}{\lambda} d\lambda = \int_0^\infty \frac{\sin^2 \lambda}{\lambda^2} d\lambda$$

Fourier Integral

Example

* Let

$$f(x) = \begin{cases} |x|, & |x| \leq 2 \\ 0, & |x| > 2 \end{cases}$$

Sketch the graph of f . Find the Fourier integral of f and deduce that

$$\int_0^\infty \frac{\sin 2\lambda}{\lambda} d\lambda = \int_0^\infty \frac{\sin^2 \lambda}{\lambda^2} d\lambda$$

for $x \neq \pm 2$

$$f(x) = \frac{2}{\pi} \int_0^\infty \left[\frac{2 \sin 2\lambda}{\lambda} + \frac{\cos 2\lambda - 1}{\lambda^2} \right] \cos \lambda x d\lambda$$

Fourier Integral

Example

* Let

$$f(x) = \begin{cases} \sin x, & |x| \leq \pi \\ 0, & |x| > \pi \end{cases}$$

Sketch the graph of f . Find the Fourier integral of f and deduce the value of

$$\int_0^\infty \frac{\sin^2 \lambda}{\pi^2 - \lambda^2} d\lambda$$

Fourier Integral

Example

* Let

$$f(x) = \begin{cases} \sin x, & |x| \leq \pi \\ 0, & |x| > \pi \end{cases}$$

Sketch the graph of f . Find the Fourier integral of f and deduce the value of

$$\int_0^\infty \frac{\sin^2 \lambda}{\pi^2 - \lambda^2} d\lambda$$

$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{\sin \lambda \pi}{1 - \lambda^2} \sin \lambda x d\lambda$$

Fourier Integral

Example

* Let

$$f(x) = \begin{cases} \sin x, & |x| \leq \pi \\ 0, & |x| > \pi \end{cases}$$

Sketch the graph of f . Find the Fourier integral of f and deduce the value of

$$\int_0^\infty \frac{\sin^2 \lambda}{\pi^2 - \lambda^2} d\lambda$$

$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{\sin \lambda \pi}{1 - \lambda^2} \sin \lambda x d\lambda$$

$$x = \pi, \text{ we get } \int_0^\infty \frac{\sin^2 \lambda}{\pi^2 - \lambda^2} d\lambda = 0$$

Fourier Integral

Example

* Let

$$f(x) = \begin{cases} 0, & x < -1 \\ 1-x, & -1 \leq x < 1 \\ 0, & x \geq 1 \end{cases}$$

Sketch the graph of f . Find the Fourier integral of f and deduce the value of

$$\int_0^\infty \frac{\sin \lambda}{\lambda} d\lambda$$

Fourier Integral

Example

* Let

$$f(x) = \begin{cases} 0, & x < -1 \\ 1-x, & -1 \leq x < 1 \\ 0, & x \geq 1 \end{cases}$$

Sketch the graph of f . Find the Fourier integral of f and deduce the value of

$$\int_0^\infty \frac{\sin \lambda}{\lambda} d\lambda$$

$$f(x) = \frac{1}{\pi} \int_0^\infty \left[\frac{2 \sin \lambda}{\lambda} \cos \lambda x + \left(\frac{2 \cos \lambda}{\lambda} - \frac{2 \sin \lambda}{\lambda^2} \right) \sin \lambda x \right] d\lambda$$

Fourier Integral

Example

* Let

$$f(x) = \begin{cases} 0, & x < -1 \\ 1-x, & -1 \leq x < 1 \\ 0, & x \geq 1 \end{cases}$$

Sketch the graph of f . Find the Fourier integral of f and deduce the value of

$$\int_0^\infty \frac{\sin \lambda}{\lambda} d\lambda$$

$$f(x) = \frac{1}{\pi} \int_0^\infty \left[\frac{2 \sin \lambda}{\lambda} \cos \lambda x + \left(\frac{2 \cos \lambda}{\lambda} - \frac{2 \sin \lambda}{\lambda^2} \right) \sin \lambda x \right] d\lambda$$

$$x = 0, \text{ we get } \int_0^\infty \frac{\sin \lambda}{\lambda} d\lambda = \frac{\pi}{2}$$