

Exercises 4 – chapter2

Shortest path algorithms

Ex. 2.8: Find the shortest path from vertex u to all vertices in the network given as following:

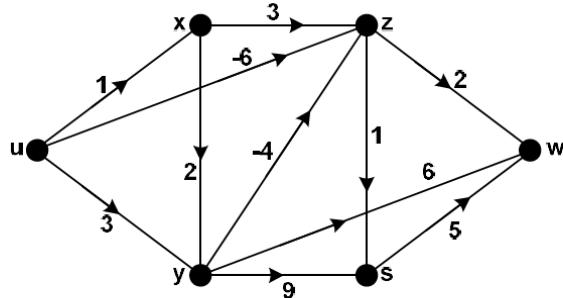


Figure 2.9: A weighted directed cycle-free graph.

Solution: using Bellman algorithm:

Starting vertex	Updating weights	S	Selected edges
u	$\pi(u) = 0$	{u}	--
x	$\pi(x) = \pi(u) + 1 = 1$	{u, x}	ux
y	$\pi(y) = \min\{\pi(x) + 2, \pi(u) + 3\} = \{3, 3\} = 3$	{u, x, y}	xy or uy
z	$\pi(z) = \min\{\pi(x) + 3, \pi(u) - 6, \pi(y) - 4\} = \{4, -6, -1\} = -6$	{u, x, y, z}	uz
s	$\pi(s) = \min\{\pi(z) + 1, \pi(y) + 9\} = \{-5, 12\} = -5$	{u, x, y, z, s}	zs
w	$\pi(w) = \min\{\pi(z) + 2, \pi(y) + 6, \pi(s) + 5\} = \{-4, 9, 0\} = -4$	{u, x, y, z, s, w}	zw

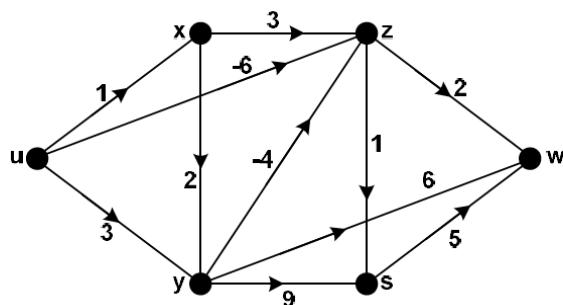
From above table , we have the following path

The path uxy and $\pi(y) = 3$ or uy and $\pi(y) = 3$

The path uz and $\pi(z) = -6$

The path uzs and $\pi(s) = -5$

The path uzw and $\pi(w) = -4$



Ex. 2.9: Find the shortest path from vertex u to all vertices in the network given in below.

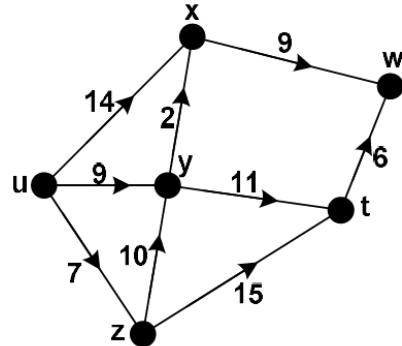


Figure 2.16: A weighted directed cycle-free graph.

Solution: using Bellman algorithm: H.W

Starting vertex	Updating weights	S	Selected edges
u	$\pi(u) = 0$	{u}	--
z	$\pi(x) = \pi(u) + 7 = 7$	{u, z}	uz
y	$\pi(y) = \min\{\pi(u) + 9, \pi(z) + 10\} = \{9, 17\} = 9$	{u, z, y}	uy
x, t	$\pi(x) = \min\{\pi(u) + 14, \pi(y) + 2\} = \{14, 11\} = 11$ $\pi(t) = \min\{\pi(y) + 11, \pi(z) + 15\} = \{20, 22\} = 20$	{u, z, y, x, t}	yx yt
w	$\pi(w) = \min\{\pi(x) + 9, \pi(t) + 6\} = \{20, 26\} = 20$	{u, z, y, x, t, w}	xw

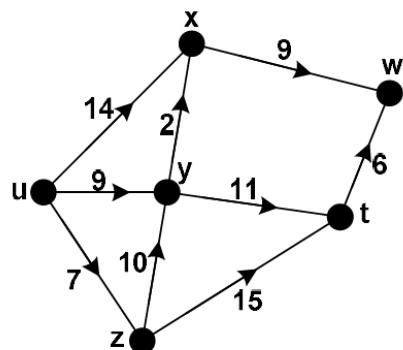
From above table , we have the following path

The path uy and $\pi(y) = 9$

The path uwx and $\pi(x) = 11$

The path uyt and $\pi(t) = 20$

The path $uwxw$ and $\pi(w) = 20$



Ex. 2.12: Find the shortest path from vertex **1** to vertex **6** for the following network.

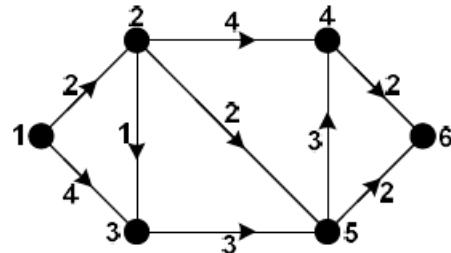


Figure 2.21: A digraph with cycle free.

Solution: using Dijkstra's algorithm:

	1	2	3	4	5	6
1	0 permanent	∞	∞	∞	∞	∞
2	--	$2_{12}^{\text{permanent}}$	4_{13}	∞	∞	∞
3	--	--	$2 + 1 = 3_{123}^{\text{permanent}}$	$2 + 4 = 6_{124}$	$2 + 2 = 4_{125}$	∞
4			--	6_{124}	$\frac{3+3=6}{4_{125}^{\text{permanent}}}$	∞
5				$4+3=7$ 6_{124}	--	$4 + 2 = 6_{1256}$
6				6_{124}		6_{1256}

From above table , we have the path $1 \rightarrow 2 \rightarrow 5 \rightarrow 6$ and $\pi(6) = 6$

Ex. 2.14: Find the shortest path from vertex A to vertex J for the following network.

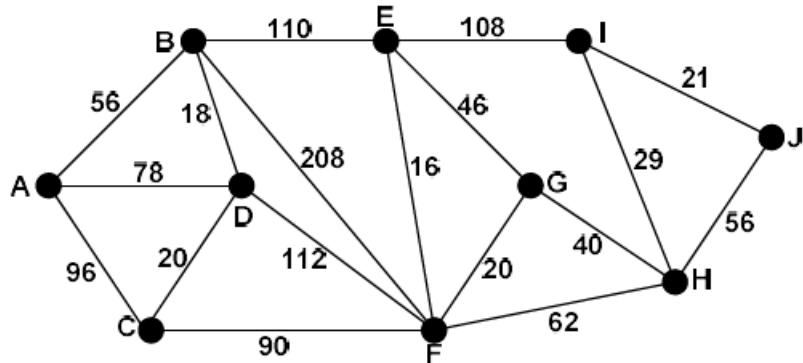


Figure 2.23: An undirected network.

Solution: using Dijkstra's algorithm: HW

	A	B	C	D	E	F	G	H	I	J
A	0^{per}	∞	∞	∞	∞	∞	∞	∞	∞	∞
B	--	56_{AB}^{per}	96_{AC}	78_{AD}		∞	∞	∞	∞	∞
C	--	--	96_{AC}	74_{ABD}^{per}	166_{ABE}	264_{ABF}	∞	∞	∞	∞
D	--	--	94_{ABDC}^{per}	--	166_{ABE}	186_{ABDF}	∞	∞	∞	∞
E	--	--	--	--	166_{ABE}^{per}	184_{ABDCF}	∞	∞	∞	∞
F	--	--	--	--	--	182_{ABEF}^{per}	214_{ABEG}	∞	274_{ABEI}	∞
G	--	--	--	--	--	--	202_{ABEFG}^{per}	244_{ABEFH}	274_{ABEI}	∞
H	--	--	--	--	--	--	--	242_{ABEFGH}^{per}	274_{ABEI}	∞
I	--	--	--	--	--	--	--	--	$271_{ABEFGHI}^{per}$	$289_{ABEFGHJ}$
J	--	--	--	--	--	--	--	--	--	$292_{ABEFGHIJ}$

From above table , we have the path $A \rightarrow B \rightarrow E \rightarrow F \rightarrow G \rightarrow H \rightarrow I \rightarrow G$ and $\pi(J) = 292$

Ex. 2.21: Apply the Bellman-Ford algorithm for the following network.

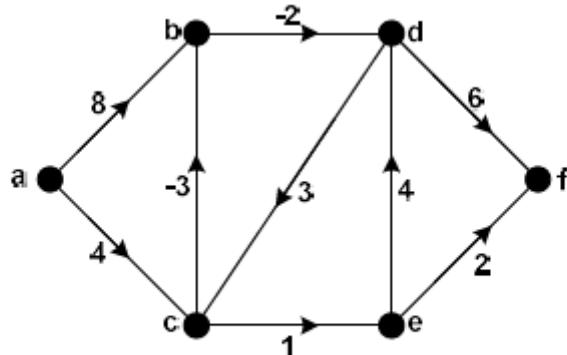


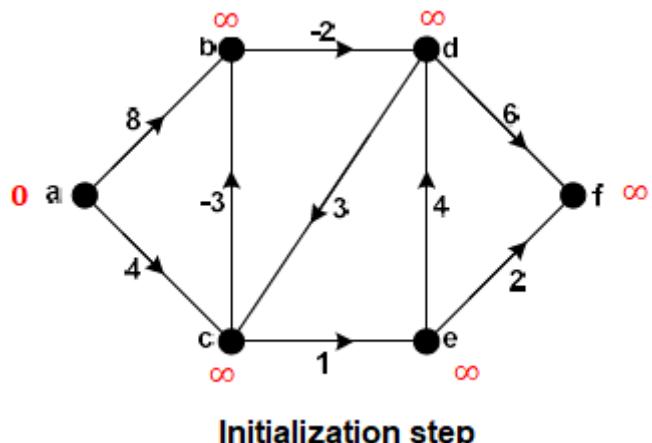
Figure 2.39: A directed network with directed cycles.

Solution: Bellman-Ford algorithm :

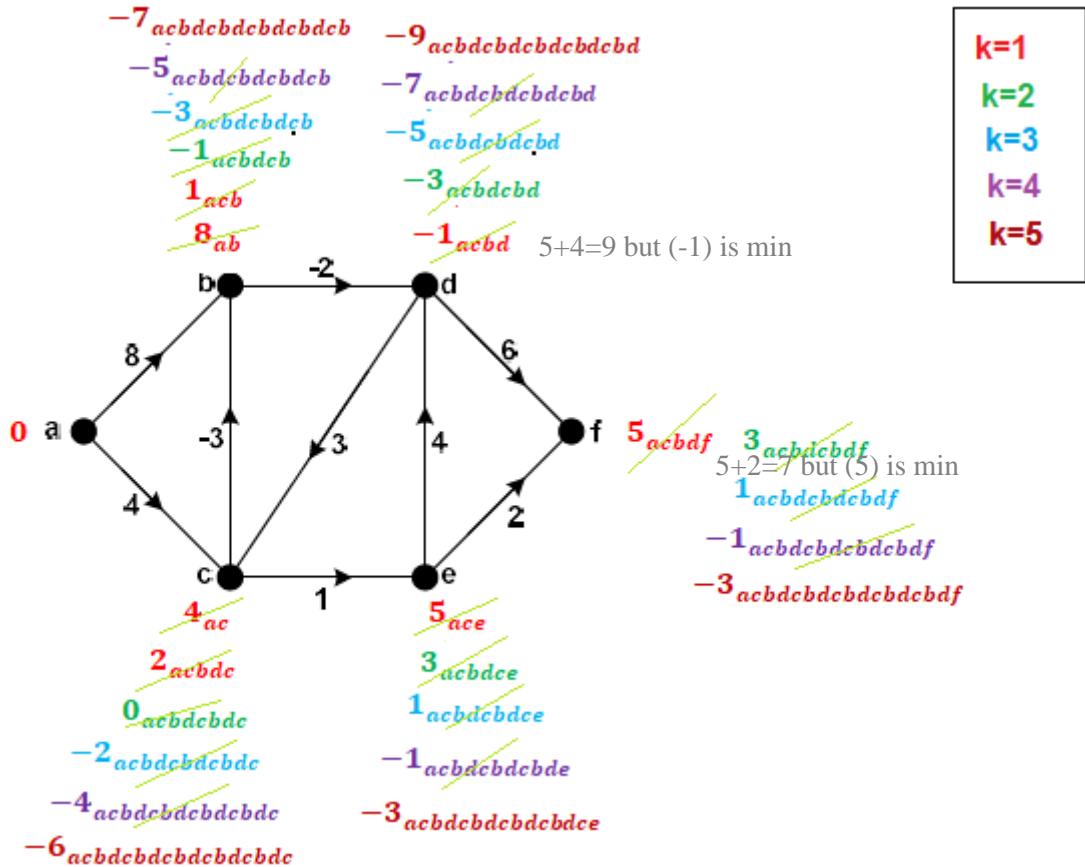
The above network contains $n=6$ vertices then each edge will be relaxed 5 times (relaxation rules: *For $k = 1, 2, \dots, n - 1$*).

Let us first list the edges with the following order:

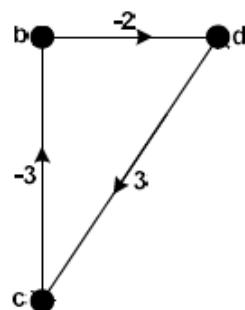
(a-b) , (a-c) , (c-b) , (b-d) , (c-e) , (e-d) , (d-c) , (d-f) and (e-f).



order: (a-b) , (a-c) , (c-b) ,(b-d) , (c-e) , (e-d) , (d-c) ,(d-f) and (e-f).



From the application of the algorithm, shows that the results obtained by the iterations are all different and hence shortest path is not existed. This is due to the cycle **c b d c** with length **-2**.



Ex. 2.20: Apply the Bellman-Ford algorithm to for the following network to find shortest path from 1 to 6 .

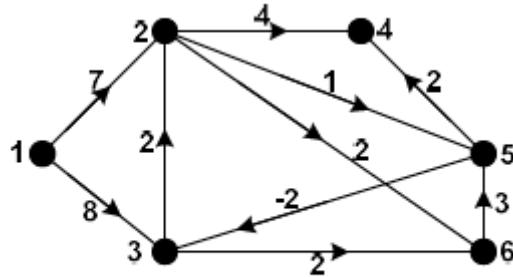
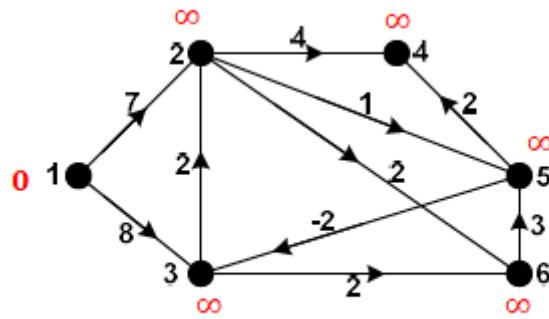


Figure 2.36: A directed network.

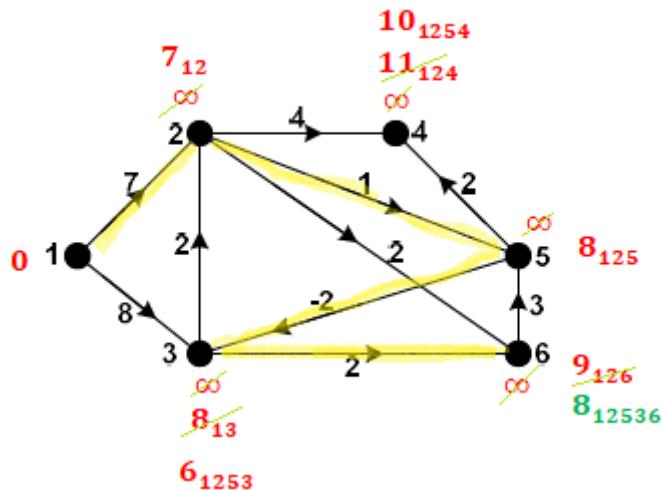
The above network contains $n=6$ vertices then each edge will be relaxed 5 times (relaxation rules: For $k = 1, 2, \dots, n-1$).

Let us first list the edges with the following order:

(1-2) , (1-3) , (3-2) ,(2-4) , (2-5) , (2-6) , (3-6) ,(6-5) , (5-3) and (5-4).



Initialization step



One can see that the relaxation in $k = 3$ is the same as the relaxation given in iteration $k = 2$ so there is no need to do the relaxation $k = 4$ as we will get the same result.
The shortest path is obtained through the path **12536** with cost **8**.