Exercises 4 — chapter?

Shortest path algorithms

Ex. 2.8: Find the shortest path from vertex u to all vertices in the network given as following:

Figure 2.9: A weighted directed cycle-free graph.

Solution: using Bellman algorithm:
Startin Updating weights S Selected
g edges
vertex
u m(u) =0 {u} -
X nx)=nr(w)+1=1 {u, x} ux
y n(y) = min{r(x) + 2,m(u) + 3} = {3,3} =3 | {uxy} Xy or uy
z m(z) = min{n(x) + 3,7(u) — 6,w(y) — 4} {u,x,y,z} uz
={4,-6,-1} = =6
S n(s) = min{n(z) + 1,7(y) + 9} = {-5,12} | {ux\y,z,s} Zs
=-5
w m(w) = min{n(z) + 2,7(y) + 6,7(s) + 5} | {uxxy,z,s,w} ZW
={-49,0} = -4

From above table , we have the following path
The path uxy and (y) = 3 or uy and n(y) = 3
The path uz and ©(z) = —6

The path uzs and (s) = —5

The path uzw and r(w) = —4




Ex. 2.9: Find the shortest path from vertex u to all vertices in the network given in below.

Figure 2.16: A weighted directed cycle-free graph.

Solution: using Bellman algorithm: HW

Startin Updating weights S Selected
g edges
vertex
u m(u) =0 {u} --
z n(x)=n(w)+7=7 {u, z} uz
y m(y) = min{m(u) + 9, n(z) + 10} {u,z,y} uy
={9,17} =9
Xt m(x) = min{w(u) + 14, 7(y) + 2} {u,z,y,x,t} yX
={14,11} = 11 yt
m(t) = min{n(y) + 11,7(z) + 15}
= {20,22} = 20
w m(w) = min{r(x) + 9,n(t) + 6} = {20,26} | {u,z,y,x,t,w} XW
=20

From above table , we have the following path
The path uy and 7(y) = 9

The path uyx and 7(x) = 11

The path uyt and (t) = 20

The path uyxw and (w) = 20




Ex. 2.12: Find the shortest path from vertex 1 to vertex 6 for the following network.

Figure 2.21: A digraph with cycle free.

Solution: using Dijkstra’s algorithm:

1 2 3 4 5 6
1 ( permanent 0 0 0 0 0
2 . zgljgrmanent 4_13 00 00 00
3 -- -- 2+1 2+4 2+2 00
= 32;;"’“"8“ = 6124 = 4135
4 - 6124 3+3=6 o0
4.permanent
125
5 44+3=7 _- 442
6124 = 61256
6 6124 61256

From above table , we have the path 1 -2 -5 > 6and n(6) = 6



Ex. 2.14: Find the shortest path from vertex A to vertex J for the following network.

Figure 2.23: An undirected network.

Solution: using Dijkstra’s algorithm: HW

A |B C D E F G H I J
A| 0PeT | oo o0 [o%) [o%) [o%) 00 o0 o) o)
B . 565;1‘ 96AC 78AD [e'e) o0 o0 (00] (0 0]
Cl-- |- 96ac | 74%50| 166485 | 26445F o * «© o
D|-- |- 94h e | 1664pE | 1864ppF | © © ©
E|-- -- - - 166}, | 1844ppcH ® o «©
Fl- |- |- - |- 182077 | 2144pk6 0 2744BE1 ©
G| -- - -- -- -- -- ZOZZZ,ZFG 244 pery | 2744BEr @
Hl -- - - -- -- -- - 2420 rren | 274451 ®
| - |- - - -- -- -- -- 2710 e roul 28%BEFcH)
I - |- - - - - -- - - 2924pEFGHI

From above table , we have the path

A->B—->E—->F->G—->H->I1I-G and n(J) =292




Ex. 2.21: Apply the Bellman-Ford algorithm for the following network.

Figure 2.39: A directed network with directed cycles.

Solution: Bellman-Ford algorithm :

The above network contains n=6 vertices then each edge will be relaxed 5 times (relaxation
rules: Fork=12,...,n—1).

Let us first list the edges with the following order:
(a-b), (a-c) , (c-b) ,(b-d) , (c-e), (e-d) , (d-c) ,(d-f) and (e-f).

Initialization step



order: (a-b), (a-c), (c-b) ,(b-d), (c-e), (e-d), (d-c) ,(d-f) and (e-f).
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From the application of the algorithm, shows that the results obtained by the iterations are all
different and hence shortest path is not existed. This is due to the cycle ¢ b d ¢ with length —2.
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Ex. 2.20: Apply the Bellman-Ford algorithm to for the following network to find
shortest path from 1to 6 .

Figure 2.36: A directed network.
The above network contains n=6 vertices then each edge will be relaxed 5 times (relaxation
rules: Fork=12,...,n—1).

Let us first list the edges with the following order:
(1-2), (1-3), (3-2) ,(2-4) , (2-5) , (2-6) , (3-6) ,(6-5), (5-3) and (5-4).

Initialization step
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One can see that the relaxation in k = 3 is the same as the relaxation given in iteration k = 2
so there is no need to do the relaxation k = 4 as we will get the same result.
The shortest path is obtained through the path 12536 with cost 8.



